Alma38.ru

Электро Свет
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как подобрать трансформаторы тока для систем учета электроэнергии

Как подобрать трансформаторы тока для систем учета электроэнергии

Много где читал, что при выборе ТТ по току. Номинал ТТ должен быть больше или равен максимального тока установки.
Но согласно ГОСТ 7746-2001 п 6.6.2 Наибольшие рабочие первичные токи трансформаторов на номинальные токи до 10000 А должны соответствовать указанным в таблице 10.
И в таблице указано, что ТТ со значением номинального первичного тока 15, 30, 75, 150, 200, 300, 600, (А) в обязательном порядке должны выдерживать наибольший рабочий первичный ток, равный соответственно, 16, 32, 80, 160, 200, 320, 630, (А). То есть получается максимальный ток установки может быть больше номинала ТТ.
В моем случае согласно ТУ
Максимальная нагрузка 165 кВт, Сила тока максимальная 258 А, категория 3
Можно поставить, возможно 250 но по нему нет информации в ГОСТ 7746-2001 в таблице 10. Есть 200А и 300А. соответственно не понятно какую максимальную нагрузку должен держать 250 согласно ГОСТА
По расчету согласно п.1.5.17 ПУЭ проходит и 250 и 300 даже 400.
Соответственно ясно, что только 200 нельзя ставить и ниже.

Помогите разобраться как правильно согласно нормативов подобрать трансформатор
какой трансформатор нужно ставить если Сила тока максимальная 258 А ?

Stass
Посмотреть профиль
Найти ещё сообщения от Stass

всё что связано с упорядоченным движением заряженных частиц

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.
Jоhnny
Посмотреть профиль
Найти ещё сообщения от Jоhnny
solar
Посмотреть профиль
Найти ещё сообщения от solar
Валериан
Посмотреть профиль
Найти ещё сообщения от Валериан

Спасибо почитал РМ-2559. Но ничего особо ограничивающего там не сказано.
По первичной обмотке
Есть расчет I р min / Ктт ≥ I min (0,1 А)
Но учитывая что минимальный ток достаточна плавающая величина и ее можно уменьшить и увеличить при желании разброс большой.

По расчету согласно ПУЭ тоже большой разброс получается. может я не так считаю ?

трансформатор тока выбран правильно, если при
максимальной нагрузке ток во вторичной обмотке трансформаторов тока будет
составлять не менее 40% номинального тока счетчика, а при минимальной
рабочей нагрузке — не менее 5%.
Проверяем трансформатор тока 400 / 5
Ток в первичной цепи при максимальной нагрузке 165 кВт
I мах= Р / 3 U cos f = 258,75128 А
Ток во вторичной цепи при максимальной нагрузке составляет:
I2 = I1 / Коэф.трансорм. = 3,234391 A
40 % I н.сч. = 2 А
I 2 > 40 % I н.сч.; 3,234391 > 2 условие выполняется

Минимальная нагрузка составляет Рмин. = 50,0 кВт
Ток в первичной цепи при минимальной нагрузке 50 кВт
I мin= Р / 3 U cos f = 78,409479 А
Ток во вторичной цепи при минимальной нагрузке составляет:
I2 = I1 / Коэф.трансорм. = 0,9801185 A
5 % I н.сч. = 0,25 А
I 2 > 5 % I н.сч. ; 0,980118 > 0,25 условие выполняется

Проблема в том что электрику в части общего проекта сдавать на экспертизу и потом замечание из-за этого получать не хочется. Заказчик хочет трансформатор побольше поставить 400/5, я не могу четко сказать ему почему 400/5 нельзя ставить, по расчету они проходят.
Класс точности под Счётчики меркурий 230 – 0,5, номинальный вторичный ток 5. Вопрос только по Номинальному первичному току трансформаторов. Ограничений не найду что 400 нельзя.

Stass
Посмотреть профиль
Найти ещё сообщения от Stass

6.2.Коэффициент трансформации трансформаторов тока должен выбираться по расчетному току присоединения. Величина
расчетного тока присоединения не должна превышать номинальный ток трансформатора тока.
6.3.Завышение коэффициента трансформации трансформаторов тока недопустимо.
6.4. В резервируемых схемах, когда ток аварийного режима проходит через один из счетчиков, коэффициент трансформации
трансформаторов тока должен выбираться потоку аварийного режима с учетом допустимой 20% перегрузки
трансформаторов тока в аварийном режиме.

Читайте так же:
Не включается выключатель с подсветкой
solar
Посмотреть профиль
Найти ещё сообщения от solar
Stass
Посмотреть профиль
Найти ещё сообщения от Stass

1. ток 258А трансформаторы 250/5 противоречит п. 6.2

2. по п. 6.3 что является завышение коэффициента трансформации тока ? Я так понимаю минимальный ток вторичной цепи не должен был меньше определенного занчения 0,5 А

возмем I норм режима 200 А (можно подогнать под любую величину впринципе до 258А) сейчас она точно не понятна
При 25%-ной нагрузке ток в первичной цепи составляет I1 = (200*25)/100 =50А

Ток вторичной цепи. при трансах 300/5 КТТ =60 при 400/5 КТТ = 80

I2 = I1/nt = 50/60 = 0,83 А

I2 = I1/nt = 50/80 = 0,625 А

Обе величины больше 0,5

А теперь допустим I норм режима 50 А. I max 259 А

трасны 200/5 возмем КТТ = 40

I1 = (50*25)/100 =12,5 А
I2 = I1/nt = 12,5/40 = 0,3125 менее 0,5. Получается тогда даже 200 не подходят.

3. 6.4 не совсем понял это 2 категория имется что ли в ввиду смысл АВР по 3 категории. И на АВР обычно если вторая категория ставяться отдельные два счетчика и трансы. Ну там уже какая схема подключения. Я так понимаю это если вторая категори и АВР один счетчик то на него надо транс с возможностью 20% перегрузки.

Таблица мощности силовых трансформаторов тока расчёт

Таблица расчёта выбора мощности силовых трансформаторов напряжения номинального тока. Таблица данных коэффициент параметров : холостой ход потерь проводов намотки группы обмоток сопротивления номиналов перегрузки типа силовых трансформаторов 6 10 0,4 кВ

Рациональная схема электроснабжения зависит от технически обоснованного подбора мощности трансформатора, влияющего на эксплуатационные затраты и окупаемость, которая возможна за 6 – 10 лет.

При выборе трансформатора руководствуются следующими критериями:

  1. Категория электроснабжения – определяется количество трансформаторов. Объекты категории электроснабжения III – один трансформатор. Объекты II и I категории электроснабжения – два или в некоторых случаях три трансформатора.
  2. Перегрузочная способность – определение мощности трансформатора.
  3. Суточный график распределения нагрузок – учет нагрузок по времени и дням в неделю.
  4. Экономичный режим работы тр-ра.

Выбор числа трансформаторов

Однотрансформаторные подстанции используются в двух случаях. Во-первых, для объектов III категории электроснабжения. Во-вторых, для потребителей, имеющих возможность резервирования электроснабжения с помощью АВР (автоматического включения резерва) с другого источника питания.

При питании потребителей I и II категории в аварийном режиме на двухтрансформаторной подстанции после срабатывания АВР целый трансформатор принимает на себя нагрузку неисправного. Поэтому его перегрузочной способности должно хватить на время замены вышедшего из строя трансформатора. В нормальном режиме трансформаторы работают недогруженными, что экономически нецелесообразно. Поэтому при аварийной ситуации некоторые потребители III категории электроснабжения отключают от сети.

Перерыв питания объектов II категории ограничен временем в одни сутки. Для восстановления схемы необходим стратегический складской резерв оборудования необходимого для ликвидации аварии. При этом мощность нового трансформатора должна быть идентична заменяемому. Таким образом, сокращается количество резервного оборудования.

Как выбрать силовой трансформатор по мощности

Сбор и анализ мощностей потребителей, запитанных от одного трансформатора, не всегда оказывается достаточным.

Для производственных объектов руководствуются порядком ввода оборудования в работу. При этом учитывают, что все потребители не могут быть включены одновременно. Однако также принимают во внимание возможное увеличение производственной мощности.

Поэтому при расчете и выборе мощности силового трансформатора руководствуются графиком среднесуточной и полной активной нагрузки подстанции, а также длительностью максимальной нагрузки. Если рассчитывается трансформатор, который будет участвовать в электроснабжении объектов жилой инфраструктуры, то учитывают и время года. В зимнее время нагрузка увеличивается за счет включения электрического обогрева, летом – кондиционеров.

Читайте так же:
D36561 уменьшить ток подсветки

Таблица №1 — Выбор силового трансформатора по мощности и допустимым аварийным нагрузкам

Вид нагрузкиИнтервалы нагрузки (кВ-А) для трансформаторов мощностью (кВ-А)
254063100160250400630
Производственные потребители, хоздворы,
мастерские по обслуживанию сельскохозяйственной
техники, стройцеха, овощехранилища и
насосные станции водоснабжения, котельные
до 4243-6869-107108-169170-270271-422423-676677-1064
Комунально-бытовые потребители — общественные
и административные предприятия (школы,
клубы, столовые, бани, магазины)
в сочетании с жилыми домами
до 4445-7071-110111-176177-278279-435436-696697-1096
Сельские жилые дома, группы
сельских жилых домов (как правило, одноэтажной застройки)
до 4546-7273-113114-179180-286287-447448-716717-1127
Комунально-бытовые потребители поселков
городского типа и городов районного подчинения
до 4344-6869-108109-172173-270271-422423-676677-1064
Жилые дома, поселки городского
типа и города районного подчинения
до 4243-6869-107108-170171-273274-427428-684685-1077
Смешанная нагрузка с преобладанием (более 60%)
производственных потребителей
до 4243-6768-106107-161162-257258-402403-644645-1014
Со смешанной нагрузкой с преобладанием (более 40%)
комунально-бытовых потребителей
до 4243-6869-107108-164165-262263-410411-656657-1033

При отсутствии точных сведений активная нагрузка определяется по формуле:

Sном ≥ ∑ Pmax ≥ Pp;

Где ∑ Pmax – максимальная активная мощность;

Pp– проектная мощность подстанции.

Если график работы подстанции характеризуется кратковременным пиковым режимом мощности – 30 мин или не более 1 часа, то тр-ор будет работать в недогруженном режиме. Поэтому выгоднее подбирать трансформатор с мощностью, приближенной к продолжительной максимальной нагрузке и полностью использовать перегрузочные возможности трансформатора с учетом систематических перегрузок в нормальном режиме.

В реальных условиях значение допустимой перегрузки определяется коэффициентом начальной загрузки. На выбор величины нагрузки влияет температура окружающего воздуха, в котором находится работающий трансформатор.

Коэффициент загрузки всегда меньше единицы.

Kн = Pc/Pmax = Ic/Imax ; где Pc, Pmax и Ic, Imax – среднесуточные и максимальные мощности и тока.

Таблица №2 — Рекомендуемые коэффициенты загрузки силовых трансформаторов цеховых ТП. Коэффициент ограничивает перегрузку трансформатора оставляя по мощности некоторый запас.

Допустимая длительность, мин

Характер суточной нагрузки эквивалентен температуре окружающей среды, постоянной времени трансформатора, типу охлаждения, допускаются периодические перегрузки.

Рисунок 1 — Расчетный график нагрузки. 1 – суточный по факту; 2 – двухступенчатый эквивалентный фактическому

Согласно графику, начальный период нагрузки характеризуется работой трансформатора с номинальной нагрузкой за 20 часов и коэффициентом начальной нагрузки – 0,705.

Второй период – коэффициент перегруза kпер.= 1,27 и временем – 4 часа. Значит, перегрузки определяются графиком нагрузки преобразованном в эквивалентный график с учетом тепла. Допустимая нагрузка тр-ра зависит от номинальной нагрузки, ее длительности и максимального пика, определяется по коэффициенту превышения нагрузки:

kпер = Iэ max / Iном

коэффициент начальной нагрузки

Iэ max – эквивалентный максимум нагрузки;

Iэ.н — эквивалентная начальная нагрузка.

Перегрузки трансформаторов допустимы, но их возможности: время и величина ограничены нормативами, установленными заводом изготовителем. Правила ПТЭЭП, глава 2. 1. 20 и гл. 2. 1. 21. ограничивают перегрузку трансформатора до 5%.

Классификация и расшифровка обозначений трансформатора тока

Классификация и расшифровка обозначений трансформатора тока

Трансформатор тока — трансформатор, первичная обмотка которого подключена к источнику тока, а вторичная обмотка замыкается на измерительные или защитные приборы, имеющие малые внутренние сопротивления.

Измерительный трансформатор тока — трансформатор, предназначенный для преобразования тока до значения, удобного для измерения. Первичная обмотка трансформатора тока включается последовательно в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, пропорционален току, протекающему в его первичной обмотке.

Читайте так же:
При включении трещит выключатель света что это

Трансформаторы тока широко используются для измерения электрического тока и в устройствах релейной защиты электроэнергетических систем, в связи с чем на них накладываются высокие требования по точности. Трансформаторы тока обеспечивают безопасность измерений, изолируя измерительные цепи от первичной цепи с высоким напряжением, часто составляющим сотни киловольт.

К трансформаторам тока предъявляются высокие требования по точности. Как правило, трансформатор тока выполняют с двумя и более группами вторичных обмоток: одна используется для подключения устройств защиты, другая, более точная — для подключения средств учёта и измерения (например, электрических счётчиков).

Классификация трансформаторов тока

Трансформаторы тока классифицируются по различным признакам:

1. По назначению трансформаторы тока можно разделить на измерительные, защитные, промежуточные (для включения измерительных приборов в токовые цепи релейной защиты, для выравнивания токов в схемах дифференциальных защит и т. д.) и лабораторные (высокой точности, а также со многими коэффициентами трансформации).

2. По роду установки различают трансформаторы тока:

а) для наружной установки (в открытых распределительных устройствах);
б) для закрытой установки;
в) встроенные в электрические аппараты и машины: выключатели, трансформаторы, генераторы и т. д.;
г) накладные — надевающиеся сверху на проходной изолятор (например, на высоковольтный ввод силового трансформатора);
д) переносные (для контрольных измерений и лабораторных испытаний).

3. По конструкции первичной обмотки трансформаторы тока делятся на:

а) многовитковые (катушечные, с петлевой обмоткой и с восьмерочной обмоткой);
б) одновитковые (стержневые);
в) шинные.

4. По способу установки трансформаторы тока для закрытой и наружной установки разделяются на:

а) проходные;
б) опорные.

5. По выполнению изоляции трансформаторы тока можно разбить на группы:

а) с сухой изоляцией (фарфор, бакелит, литая эпоксидная изоляция и т. д.);
б) с бумажно-масляной изоляцией и с конденсаторной бумажно-масляной изоляцией;
в) газонаполненные (элегаз);
г) с заливкой компаундом.

6. По числу ступеней трансформации имеются трансформаторы тока:

а) одноступенчатые;
б) двухступенчатые (каскадные).

7. По рабочему напряжению различают трансформаторы:

а) на номинальное напряжение свыше 1000 В;
б) на номинальное напряжение до 1000 В.

Параметры трансформаторов тока

Важными параметрами трансформаторов тока являются коэффициент трансформации и класс точности.

Коэффициент трансформации

Коэффициент трансформации трансформатора тока определяет номинал измерения тока и означает при каком первичном токе во вторичной цепи будет протекать определённый стандартный ток (чаще всего это 5 А, редко 1 А). Первичные токи трансформаторов тока определяются из ряда стандартизированных номинальных токов.

Коэффициент трансформации трансформатора тока обычно записывается в виде отношения номинального первичного тока ко номинальному вторичному в виде дроби, например: 75/5 (при протекании в первичной обмотке тока 75 А — 5А во вторичной обмотке, замкнутой на измерительные элементы) или 1000/1 (при протекании в первичной цепи 1000 А, во вторичных цепях будет протекать ток 1 А.

Иногда трансформаторы тока могут иметь переменный коэффициент трансформации, что возможно пересоединением первичных обмоток из параллельного в последовательное соединения (например такое решение применяется в трансформаторах тока ТФЗМ — 110) либо наличием отводов на первичной или вторичной обмоток (последнее применяется в лабораторных трансформаторах тока типа УТТ) или же изменением количества витков первичного провода, пропускаемого в окно трансформаторов тока без собственной первичной обмотки (трансформаторы тока УТТ).

Класс точности

Для определения класса точности трансформатора тока вводятся понятия:

  • погрешности по току ΔI = I2 — I1’, где I2- действительный вторичный ток, I1’ =I1/n — приведённый первичный ток, I1 — первичный ток , n — коэффициент трансформатора тока;
  • погрешности по углу δ = α1 — α2, где α1 — теоретический угол сдвига фаз между первичным и вторичным током α1 = 180°,α2 — действительный угол между первичным и вторичным током;
  • относительной полной погрешности ε%=(|I1’-I2|)/|I1’|, где |I1’| — модуль комплексного приведённого тока.
Читайте так же:
Сенсорный выключатель livolo светодиодная лента

Погрешности по току и углу объясняются действием тока намагничивания. Для промышленных трансформаторов тока устанавливаются следующие классы точности: 0,1 0,5; 1; 3, 10Р.

Согласно ГОСТ 7746 — 2001 класс точности соответствует погрешность по току ΔI, погрешность по углу равна: ±40’ (класс 0,5); ±80’ (класс 1), для классов 3 и 10Р угол не нормируется. При этом трансформатор тока может быть в классе точности только при сопротивлении во вторичных цепи не более установленного и тока в первичной цепи от 0,05 до 1,2 номинального тока трансформатора.

Для трансформаторов тока с добавлением сзади класса точности литеры S (например 0,5S) означает, что трансформатор будет находится в классе точности от О,01 до 1,2 номинального тока. Класс 10Р (по старому ГОСТ Д) предназначен для питания цепей защиты и нормируется по относительной полной погрешности, которая не должна превышать 10% при максимальном токе к.з. и заданном сопротивления вторичной цепи.

Согласно международному стандарту МЭК (IEС 60044-01) трансформаторы тока должны находится в классе точности при протекании по первичной его обмотке тока 0,2 ÷ 200% номинального, что обычно достигается изготовлением сердечника из нанокристаллических сплавов.

Обозначения трансформаторов тока

Отечественные трансформаторы тока имеют следующее обозначения:

  • первая буква в обозначении «Т» — трансформатор тока
  • вторая буква — разновидность конструкции: «П» — проходной, «О» — опорный, «Ш» — шинный, «Ф» — в фарфоровой покрышке
  • третья буква — материал изоляции: «М» — масляная, «Л» — литая изоляция

Далее через тире пишется класс изоляции трансформатора тока, климатическое исполнение и категория установки. Например ТПЛ — 10УХЛ4 100/5А: «трансформатор тока проходной с литой изоляцией с классом изоляции 10 кВ, для умеренного и холодного климата, категории 4 с коэффициентом трансформации 100/5» (читается как «сто на пять»).

Требования к классу точности трансформаторов тока для коммерческого учета

Трансформаторы тока

Измерительный

В информационно-измерительных цепях понижающие средства играют первую роль. Схема включает в себя приемо-передающие приборы с измерительными устройствами, счетчиками электроэнергии и специализированным программным обеспечением. Однако при высокой погрешности преобразования точность измерительных приборов не имеет смысла. Поэтому классы точности трансформаторов тока с развитием высокоточного оборудования приобретают особую значимость.

Они представляет собой важную характеристику, которая показывает соответствие погрешности измерений номинальным значениям. На нее влияет множество параметров.

Общий принцип работы

Через силовую катушку с некоторым количеством витков проходит ток с преодоление сопротивления в ней. Вокруг нее образуется магнитный поток, который изменяется во времени. Его колебания передаются на перпендикулярный магнитопровод. Такое расположение позволяет снизить потери в процессе преобразований энергий.

За счет колебания магнитного поля во вторичных обмотках генерируется электродвижущая сила. Преодолевая сопротивление, пониженный ток течет по цепи измерительных приборов. Напряжение пропорционально входной нагрузке и зависит от количества витков в первичной катушке. В электромеханике такое соотношение называют коэффициентом трансформации.

Класс точности представляет собой отклонение реальной величины от номинального значения.

Для чего используются

Разнообразные виды измерительных трансформаторов встречаются как в небольших приборах размером со спичечный коробок, так и в крупных энергетических установках. Их основное назначение – понижать первичные токи и напряжения до значений, необходимых для измерительных устройств, защитных реле и автоматики. Применение понижающих катушек обеспечивает защиту цепи низшего и высшего ранга, поскольку они разделены между собой.

Понижающие средства разделяют по признакам эксплуатации и предназначены для:

  • измерений. Они передают вторичный ток на приборы;
  • защиты токовых цепей;
  • применения в лабораториях. Такие понижающие средства имеют высокую классность точности;
  • повторного конвертирования, они относятся к промежуточным инструментам.

Понижающие средства делят по типу установки: наружные, внутренние, переносные и накладные, а также по типу материалов изоляции, коэффициенту трансформации.

Измерение

Измерительный трансформатор необходим для понижения высокого тока основного напряжения и передачу его на измерительные устройства. Для подключения стандартных приборов к высоковольтной сети потребовались бы громоздкие установки. Реализовывать инструменты таких размеров экономически не выгодно и не целесообразно.

Читайте так же:
Сечение провода для мощных светодиодов

Использование понижающих трансформаторов позволяет применять обычные устройства измерения в обычном режиме, что расширяет спектр их применения. Благодаря снижению напряжения, они не требуют дополнительных модификаций. Трансформатор отделяет высоковольтное напряжение сети от питающего напряжения приборов, обеспечивая безопасность из использования. От их классности зависит точность учета электрической энергии.

Защита

Кроме питания измерительных приборов понижающие трансформаторы подают напряжение на системы защиты и автоматической блокировки. Поскольку в сетевой электросети происходят перепады и скачки напряжения, которое губительно для высокоточного оборудования цепи.

В энергетических установках оборудование делится на силовое и вторичное, которое контролирует процессы первичной схемы подключения устройств. Высоковольтная аппаратура располагается на открытых площадках или устройствах. Вторичное оборудование находится на релейных планках внутри распределительных шкафов.

Промежуточным элементом передачи информации между силовыми агрегатами и средствами измерения, управления, контроля и защиты являются понижающие или измерительные трансформаторы. Они разделяют первичную и вторичную цепь от пагубного воздействия силовых агрегатов на чувствительные измерительные приборы, а также защищают обслуживающий персонал от повреждений.

Как рассчитать погрешность

Погрешность измерительных трансформаторов определена их конструктивной особенностью. На точность влияет геометрические размеры и формы магнитопроводов, число витков и диаметр провода обмоток. Также большое влияние также оказывает материал, из которого изготовлен магнитопровод.

Такие характеристики электромагнитных материалов при невысоких токах первой обмотки имеют погрешность 1- 5%, поэтому их точность очень низкая. Конструкторы стремятся добиться классности в этом масштабе. Вместо конструкторских сталей применяют аморфные материалы.

Для вычисления класса точности используют следующие формулы:

  • погрешность по величине тока: (delta)I = I2 – I1, где I2 – ток во вторичной обмотке, I2 – ток силовой цепи;
  • погрешность по углу сдвига: (alpha) = (alpha)2 – (alpha)1, где (alpha)2 = 180 градусам, (alpha)1 – фактический угол сдвига.

Погрешности углу и величине тока объясняют воздействие напряжения намагничивания.

Каким требованиям должны соответствовать для коммерческого учета электроэнергии

Современные технологии позволяют изготавливать трансформаторы от 6 до 10 кВ с числом катушек до четырех штук. Каждая катушка имеет свой класс точности. Он подбирается исходя из области применения. Каждая предусматривает свой комплекс тестирования.

Для коммерческих приборов учета используют катушки с классностью 0,2S и 0,5S. Они обладают высокой проницаемостью магнитного поля. Литера «S» указывает на тестирование трансформатора в пяти точках в диапазоне от 1-120% от расчетного напряжения.

Схема проверок выглядит как 1х5х20х100х120. Для классов 1; 0,5 и 0,2 тестирование выполняют по четырем точкам 5х20х100х120%.Для релейной и автоматической защиты используют три точки 50х100х120. Такие трансформатор имеют классность с литерой «З». Требования к классу точности представлены в ГОСТ 7746—2001.

Таблица допустимых погрешностей для коммерческого учета

Для коммерческих приборов учета существует таблица погрешностей.

КлассНапряжение первичной обмотки в процентах от расчетного значенияПредел погрешности по току в процентахПредел погрешности по углу
0,250,7530
200,3515
100-1200,210
0,551,590
200,7545
100-1200,530

Требования, предъявляемые к классу точности преобразователей, представляют собой диапазоны, в которые погрешности должны укладываться. С увеличением точности уменьшается разброс значений.

Разница между преобразователями с маркировкой «S» и без нее, например, 0,5 и 0,5S заключается в том, что первые не нормируют ниже 5% от расчетного тока.

Преимущества использования высокоточных трансформаторов

Измерительные трансформаторы с высоким классом точности имеют ряд преимуществ:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector