Alma38.ru

Электро Свет
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Выбор автоматического выключателя

Выбор автоматического выключателя

Выбрать автоматический выключатель для электродвигателя, характеристики которого приведены в таблице 1. Режим работы – непрерывный.

Таблица 1 – Характеристики электродвигателя

ВариантРном, кВтКПДcos φUн, В
1,50,830,85

Основным элементом автомата, реализующего функции защиты электродвигателя (в дальнейшем рассматриваем асинхронные двигатели серии 4А или АИ) от токов КЗ являются электромагнитный расцепитель и токовая отсечка. Причем, они должны быть отстроены от пусковых токов Iп (и ударного пускового тока Iудп). Для асинхронных двигателей с фазным или короткозамкнутым ротором пусковой ток находим по формуле (1.1):

где KI – кратность пускового тока двигателя;

Iн – номинальный (линейный) ток в обмотке статора, находим по формуле (1.2).

где Pн – полная номинальная мощность электродвигателя, кВт;

Uнл – номинальное линейное напряжение на обмотке статора, В;

η – коэффициент полезного действия;

cosφ – коэффициент мощности.

Если двигатель работает в повторно-кратковременном режиме, номинальный ток двигателя берется при относительной продолжительности включения ПВ = 25 %.

Ударный пусковой ток двигателя по своей величине равен току трехфазного КЗ за сопротивлением, равным сопротивлению неподвижного электродвигателя. Величина ударного пускового тока (его амплитудное значение) определяется по формуле (1.3):

Для защиты электродвигателей с короткозамкнутым ротором ток срабатывания электромагнитного расцепителя (токовой отсечки) отстраивается от ударного пускового тока двигателя при полном напряжении питания сети и выведенном пусковом резисторе в цепи ротора (для двигателей с фазным ротором), ток срабатывания токовой отсечки находим по формуле (1.4):

Причиной перегрузки двигателей могут быть затянувшийся пуск, большая нагрузка на валу. А при обрыве одной из фаз, торможение двигателя. Часто перегрузки бывают кратковременными. Наиболее опасными являются устойчивые перегрузки. Основной опасностью сверхтоков для электродвигателя является сопровождающее их повышение температуры обмоток двигателя. Перегрузка по току оценивается с помощью коэффициента кратности пускового тока двигателя и задается в каталоге.

В качестве элементов защиты могут применяться тепловые расцепители автоматов, тепловые реле магнитных пускателей, максимальные токовые реле автоматов с выдержками времени на срабатывания.

Токовые (электромагнитные) защиты имеют преимущества по сравнению с тепловыми ввиду простоты эксплуатации и более легкого подбора и регулировки защитных характеристик.

Однако токовые защиты не позволяют использовать перегрузочные возможности электродвигателей из-за малого времени их действия при небольших кратностях тока. Ток срабатывания максимальной токовой защиты от перегрузки определяется по формуле (1.5):

На практике широко используются тепловые расцепители.

Номинальный ток теплового или комбинированного расцепителей для двигателей с длительным режимом работы и легкими условиями пуска равен:

Для двигателей с короткозамкнутым ротором, работающим в повторно-кратковременном режиме, но при тяжелых условиях пуска:

Номинальная уставка на ток срабатывания теплового расцепителя определяется согласно методике, приведенной выше. Время действия защиты от перегрузки, с одной стороны, должно быть больше времени пуска электродвигателя (либо больше времени его самозапуска), с другой стороны, это время не должно превышать допустимой для двигателя длительности прохождения сверх тока. Время пуска асинхронных двигателей составляет 10-15 секунд.

Выбор защитной аппаратуры для асинхронного двигателя серии АИР со следующими основными техническими данными:

Тип двигателя – АИР 100 L2;

Мощность – 5,5 кВт;

Коэффициент мощности – 0,89;

Коэффициент кратности пускового тока – 7,5;

Номинальное напряжение – 380 В.

Необходимо выбрать защитный аппарат, позволяющий осуществлять пуск и защиту двигателя в режимах перегрузки.

По формуле (1.2) определим номинальный ток двигателя:

Тогда по формуле (1.1) пусковой ток двигателя будет равен:

Читайте так же:
Реверсивный выключатель нагрузки ot40f3c

Согласно формуле (1.3) ударный пусковой ток будет равным:

В качестве защитного аппарата, выполняющего одновременно функции управления в режиме редких включений, можно применить автоматический выключатель серии ВА51. Автоматические выключатели серии ВА51 предназначены для эксплуатации в электроустановках с напряжением до 660 В переменного тока и до 440 В постоянного тока. Выключатели осуществляют защиту от токов КЗ, перегрузки и недопустимого снижения напряжения, а также от нечастых оперативных включений и отключений электрических цепей. Они имеют электротепловые и электромагнитные расцепители тока, но может быть исполнение только с электромагнитным расцепителем. Отношение тока срабатывания электромагнитных расцепителей к номинальному току тепловых расцепителей (кратность отсечки) находится в пределах 10 — 12. Указанная кратность (кратность отсечки) относится к автоматическим выключателям переменного тока. Автоматические выключатели с тепловыми максимальными расцепителями должны срабатывать при токе, значение которого равно 1,25 номинального тока расцепителя в течение времени менее 2 ч (в нагретом состоянии). Номинальный ток автомата должен быть не меньше номинального тока электродвигателя. Согласно расчетной величины номинального тока двигателя Iн = 11 А находим номинальный ток автомата Iна = 16 А.

Ток срабатывания токовой отсечки (электромагнитного расцепителя) отстраивается от ударного пускового тока. Принимаем согласно формуле (1.4):

Находим номинальную уставку на ток срабатывания электромагнитного расцепителя и выбираем тип автомата, имеющего данный расцепитель:

– тип автомата ВА51-30.

Номинальный ток электромагнитного расцепителя – 16 А.

Для защиты двигателя при длительном протекании пускового тока применяется тепловой расцепитель автомата ВА-51-30М1-34. Номинальный ток расцепителя должен быть не выше номинального тока автомата (Iт ≤ Iна).

Номинальная уставка на ток срабатывания теплового элемента есть среднее значение между током несрабатывания расцепителя – 1,1·Iна =1,1·16=17,6 А и нормированным значением тока срабатывания – 1,45·Iна = 1,45·16 = 23,2 А.

Ближайшее нормированное значение номинальной уставки для данной серии автомата равно Iнт = 20 А.

Определим для автомата ВА-51-35М1-34 с тепловым расцепителем на номинальный ток 20 А время срабатывания при токе перегрузки (пусковом токе двигателя), равном 23,25 А.

Определим кратность тока Iп по отношению к номинальному току расцепителя Iт

Находим пределы по времени срабатывания для заданного тока (1,8-5) с.

Время пуска двигателя не должно превышать пределов по времени срабатывания защиты.

Вывод. Для защиты асинхронного двигателя в случае возникновения аварийных режимов при пуске можно использовать автоматический выключатель серии ВА51 с электромагнитным расцепителем.

Основные параметры защитного аппарата:

— номинальный ток автомата, его электромагнитного и теплового расцепителей – Iна = 16 А;

— номинальная уставка на ток срабатывания электромагнитного расцепителя – Iно = 250 А;

— номинальная уставка на ток срабатывания теплового элемента – Iнт = 20 А;

— пределы по времени срабатывания тепловой защиты – tс = (1,8-5) с.

ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЯ ОТ АВАРИЙНЫХ РЕЖИМОВ

Автоматическая защита электродвигателей

Привод исполнительных механизмов различных технологических процессов, как правило, осуществляется от электродвигателей.

Двигатель относится к основным компонентам электропривода, в наибольшей степени подвергающимся в процессе эксплуатации воздействию неблагоприятных факторов различного характера.

  • проблемы в исполнительных механизмах, вызывающие торможение и перегрузку приводного электродвигателя;
  • нарушение качества электроэнергии, питающей электродвигатель;
  • дефекты, возникающие внутри самого двигателя.

Для обеспечения надёжной эксплуатации, электродвигатель должен быть оборудован автоматическими защитами в необходимом объёме, реагирующими на опасные отклонения рабочих параметров и перегрузки по любой причине из перечисленных групп и действующими на отключение выключателя.

Минимальный объём автоматических устройств защиты электродвигателей определяется правилами устройства электроустановок (ПУЭ). Электрические двигатели различаются по номинальной мощности, напряжению питания, роду потребляемого тока, а также конструктивными особенностями.

Читайте так же:
Условия эксплуатации масляного выключателя

В соответствии с этими различиями, а также исходя из условий работы, для каждой модели электрической машины производится выбор автоматической защиты электродвигателя. Различные виды автоматических устройств действуют как на отключение выключателя, так и на включение предупредительной сигнализации.

  • машины переменного; тока.

В быту и производстве распространены двигатели переменного тока, которые бывают асинхронными и синхронными.

  • низковольтные, питающиеся напряжением до 1000 В;
  • высоковольтные, рассчитанные на работу в сетях выше 1000 В.

Наиболее массовое распространение имеют асинхронные машины с номинальным напряжением 0,4 кВ.

Защищаются они посредством автоматического выключателя, имеющего электромагнитный и тепловой расцепители от короткого замыкания и перегрузки.

ОСНОВНЫЕ ТИПЫ ЗАЩИТ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ ДО 1000 В

Токовая отсечка.

Из всех аварийных режимов наиболее опасным является междуфазное короткое замыкание. Данный вид повреждения требует немедленного отключения асинхронного двигателя выключателем от питающей сети.

В соответствии с действующими правилами, асинхронные двигатели до 1000 В должны защищаться от коротких замыканий плавкими предохранителями или электромагнитными и тепловыми расцепителями автоматических выключателей.

Как обычно, правила отстают от фактических реалий. На вновь вводимых объектах асинхронные электрические машины комплектуются выносными многофункциональными блоками автоматической релейной защиты электродвигателя на базе микроконтроллеров, воздействующими на отключение выключателя.

Основной сути это не меняет. Автоматические защитные устройства от междуфазных коротких замыканий реагируют на сверхтоки и не имеют выдержки времени отключения выключателя. Такие устройства по-прежнему называют токовыми отсечками, защитные реле срабатывают при КЗ в обмотке статора либо на выводах асинхронного двигателя.

Зоной действия защищающего устройства является участок электросети, расположенный после ТТ или датчика. Обычно кроме самого асинхронного двигателя в защищаемой зоне находится и питающий кабель.

Параметры срабатывания токовой отсечки должны быть надёжно отстроены от пусковых токов. С другой стороны, автоматическое защитное устройство должно обладать достаточной чувствительностью при межвитковых замыканиях в любой части обмотки статора асинхронной машины.

Данный вид ненормального режима возникает при неисправностях или перегрузке исполнительного механизма. Перегрузка двигателя также может происходить по причине его недостаточной мощности. Режим перегрузки характеризуется повышенным уровнем токового потребления с относительно небольшой кратностью по сравнению с номинальным значением.

Токовая уставка автоматической защиты электродвигателя от перегрузки меньше значения пусковых токовых параметров, поэтому должна быть осуществлена отстройка от режима запуска путём искусственной задержки времени срабатывания и отключения автоматического выключателя.

  • теплового расцепителя автоматического выключателя защиты электродвигателя;
  • выносного защитного комплекта с токовым реле и реле времени, воздействующего на отключение выключателя при перегрузке;
  • блока комплексной защитной автоматики двигателя на микроконтроллере, при срабатывании воздействующего на расцепитель выключателя.

В случае применения автоматического выключателя требуется просто подобрать подходящий по номинальному току и характеристике автомат. Тепловой расцепитель выключателя защиты электродвигателя обеспечивает интегральную зависимость времени отключения выключателя от величины токовой перегрузки.

Защитный автоматический релейный комплект с выносными электромагнитными реле настраивается на фиксированные ток и время срабатывания защиты.

В этом варианте, в отличие от теплового расцепителя, токовые и временные параметры между собой не связаны. Выходные реле выносных комплектов релейной защиты должны воздействовать на независимый (не тепловой) расцепитель автоматического выключателя.

ЗАЩИТА ОТ НЕПОЛНОФАЗНОГО РЕЖИМА

Этот вид автоматического защитного устройства не предписан ПУЭ как обязательный, хотя является весьма желательным. При работе трёхфазного электродвигателя на двух фазах происходит постепенный перегрев обмоток, приводящий к разрушению изоляции обмоточного провода.

Самое плохое в этой ситуации то, что потребляемый ток при этом может быть сравним с номинальной величиной, то есть токовые защиты электродвигателя, в том числе расцепители теплового типа, защищающие от перегрузки на этот режим могут не среагировать.

Читайте так же:
Схема подключения автоматического выключателя дома

Некоторые модели электрических машин содержат встроенные (температурные) датчики обмотки.

Такие модификации электрических машин можно оснастить специальным устройством защиты электродвигателя, осуществляющие контроль теплового состояния электромашины.

Тепловые защитные устройства способны помочь и в случае перегрева при работе на двух фазах.

ЗАЩИТНЫЕ УСТРОЙСТВА ДВИГАТЕЛЕЙ ВЫШЕ 1000 ВОЛЬТ

Защищённость высоковольтных электрических машин обеспечивается только выносными релейными устройствами. Тепловой и электромагнитный расцепители являются прерогативой низковольтных устройств.

Принцип действия и расчёт уставок токовой отсечки и защиты от перегрузки такой же, как для низковольтных машин. Но кроме этого существуют специфические защитные устройства, не применяемые на низких напряжениях.

Защита от однофазных замыканий на землю.

Особенностью сетей высокого напряжения (6 – 10 кВ) является работа в режиме изолированной нейтрали. В таких сетях величина Iз замыкания на землю может составлять всего единицы ампер, что находится вне зоны чувствительности максимальных токовых защит от перегрузки.

Реле земляной защиты электродвигателя (это её название на жаргоне релейщиков) подключается к специальному трансформатору нулевой последовательности, представляющему собой тор (бублик), через который проходит кабель питания.

При этом через тор не должен проходить вывод экранирующей оболочки высоковольтного кабеля, в противном случае имеют место ложные срабатывания устройства с отключением выключателя.

© 2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Устройство однофазного асинхронного двигателя

Наибольшее применение однофазные асинхронные электродвигатели нашли в быту и малом бизнесе. Их применение необходимо в тех областях, где нет трехфазной электрической сети. Многие компании выпускаются однофазные электродвигатели мощностью до 2 кВт и выше. Применение однофазных двигателей большей мощности ограничено мощностью бытовой сети и проблемами запуска однофазного двигателя.

Приемлемое, на сегодняшний день, решение таких проблем возможно при использовании однофазного частотного преобразователя. Но применение преобразователя частоты будет оправдано в том случае, когда необходимо регулировать частоту вращения электродвигателя. Кроме того, однофазные частотные преобразователи обычно выпускаются до мощности 2,2кВт, что в свою очередь тоже является ограничением. В таком случае приходится использовать однофазный асинхронный двигатель. Внешний вид однофазных асинхронных двигателей различных фирм производителей показан на рисунках.

Модели однофазных АД

Устройство однофазного асинхронного двигателя показано на рисунке

Устройство однофазных АД

Как видно из рисунка, основное отличие однофазного двигателя от трехфазного, является наличие в нем центробежного переключателя. Центробежный переключатель подключает пусковую обмотку двигателя перед пуском и отключает после окончания пуск, при достижении двигателя номинальных оборотов. Центробежный переключатель состоит из специальной стальной пружины и калиброванных грузиков, которыми настраивается момент отключения пусковой обмотки. Вся конструкция собрана в надежном корпусе. Быстрая работа переключателя уменьшает искрение и износ контактов и продлевает надежную работу устройства.

Центробежный переключатель

Центробежный переключатель

Другой элемент, которого нет в трехфазном асинхронном двигателе, но который есть в однофазном это рабочий и пусковой конденсатор.

Пусковой конденсатор

Пусковой конденсатор

Конденсатор может быть установлен и вне двигателя, например, вместе с пускозащитной аппаратурой.

Корпус

Корпус электродвигателей изготовлен из высококачественного из алюминиевого сплава или чугуна марки. В корпусе сделаны боковые отверстия для циркуляции воздуха. Возможна работа однофазного двигатель и в горизонтальном и в вертикальном положении.

Статор двигателя

Статор однофазного двигателя изготавливается из ламината качественной электротехнической стали с термохимической обработкой, что снижает магнитные потери и рабочую температуру двигателя. Сердечник статора, набирается из штампованных листов электротехнической стали. В пазы сердечника укладывается статорная обмотка. Изоляция пазов статора, изоляция обмоточного провода, пропиточный состав и другие изоляционные детали статора образуют систему изоляции.

Читайте так же:
Нужно ли маркировать выключатели

Обмотки

Статорная обмотка наматывается круглым эмалированным проводом и пропитана в нагревостойком электроизоляционном лаке. Обмоточный провод как стандарт покрыт лаком класса Н. После укладки вся обмотка повторно пропитывается специальным полиэстерным составом. Такая технология обеспечивает высокую электрическую и механическую надежность обмоток и долгий срок службы. Обмотка статора мотается как две обмотки главная(рабочая) (U1 и U2) и вспомогательная (пусковая) (Z1 и Z2). Главная обмотка подключается непосредственно к сети, вспомогательная обмотка также подключается к сети, но через рабочий конденсатор.

Ротор

Сердечник ротора однофазного двигателя изготовлен из ламината качественной стали с термической и химической обработкой. Его напрессовывают на вал. Обмотка ротора имеет название «Беличья клетка» или «Беличье колесо»- короткозамкнутая отливается из чистого алюминия . что обеспечивает низкий момент инерции и повышение К П Д.

Вал

Вал однофазного двигателя изготавливают из углеродистой стали. Такая сталь имеет высокую механическую прочность, и предотвращает прогиб вала под нагрузкой, что уменьшает его износ. По отдельному заказу вал однофазного двигателя можно изготовить из нержавеющей стали.

Подшипниковые щиты

Подшипниковые щиты отливаются из алюминиевого сплава или чугуна с армирующей стальной втулкой под посадку подшипника. Их площадь поверхности увеличина для лучшего охлаждения подшипников. Обычно в переднем подшипниковом щите устанавливается невинтовая пружина, предназначенная для осевого поджатия подшипника.

Подшипниковые узлы

Обычно в однофазных двигателях применяются шариковые подшипники, но в двигателях большими высотами оси вращения по отдельному заказу можно применять роликовые подшипники, которые допускают в 2 раза большие радиальные нагрузки. В однофазных двигателях с высотой оси вращения до 180 мм в подшипники закладывается смазка на весь гарантийный срок службы (не менее 20 тыс. часов). В подшипниковые узлы однофазных двигателей с осями вращения более 200 мм необходимо регулярно производить полную или частичную смену отработанной смазки. График смены смазки можно найти в инструкции по эксплуатации двигателя. Типы и размеры применяемых в двигателях подшипников указаны в каталогах. В них же можно найти величины предельно допустимых радиальных и осевых нагрузок рабочего конца вала

.Подшипник

Подшипники

Импортные однофазные двигатели снабжаются подшипниками высокого качества, от лучших всемирных брендов. Это обеспечивает длительный срок службы в тяжёлых условиях работы. В качестве смазки используется высококачественная смазка Super-premium Polyrex ЕМ. Эта смазка обеспечивает надежную работу подшипников и низкий уровень шума. В двигателях отечественных производителей используются более дешевые подшипники 76-180205Ш2У (6205 2RS P63.QE6) с постоянно заложенной смазкой на весь срок службы.

Вентилятор

Вентилятор однофазного двигателя изготавливают из пластмассы. Его устанавливают на вал ротора а сверху защищая кожухом. Вентиляторы служат для обеспечения эффективного охлаждения двигателя. Новые компьютерные программы моделирования асинхронных двигателей позволяют разрабатывать вентилятор и его крышку для работы с минимальным уровнем шума. Обдув осуществляется внешним вентилятором, закрытым направляющим кожухом. Двигатели производятся с симметричной радиальной, либо с комбинированной системой вентиляции. В двигателях с симметричной радиальной вентиляцией в станине предусмотрены отверстия для выхода воздуха. Изнутри станины отлиты выступы с каналами для протока воздуха в аксиальном направлении. Вентилятор, отлитый вместе с короткозамыкающими кольцами ротора прогоняется воздух через двигатель. Для циркуляции воздуха внутри двигателя используются диффузоры, смонтированные в двух подшипниковых щитах.

Обдув однофазного двигателя с комбинированной вентиляцией производится центробежным вентилятором, установленным на валу двигателя со стороны, противоположной приводу. Вентилятор обдувает ребристую поверхность станины и вентиляционными лопатками ротора всасывающими воздух через нижнюю часть отверстий в подшипниковых щитах. Воздух омывает лобовые части обмотки и выбрасывается через верхнюю часть отверстий в щитах.

Читайте так же:
Сенсорная выключатели с режимами

Клемная коробка

Клемная коробка однофазного двигателя изготовливают из алюминиевого сплава или чугуна. В коробке предусмотрено одно или два резьбовых отверстия для сальников, через которые проходят присоединительные кабеля. Конструкция клемной коробки позволяет монтировать коробку с шагом 90°. При заказе двигателя необходимо уточнять верхнее или боковое расположение клемной коробки.

Лапы

В зависимости от способа крепления двигатели подразделяются на фланцевые и со способом крепления на лапах. Существуют универсальные двигатели с лапами и фланцем. Существуют конструкции со съемными лапами позволяющие изменять способ монтажа.

Уплотнения

Для защиты однофазного двигателя от агрессивных условий окружающей среды в электродвигателях применяются V-образные манжеты и манжеты с пружиной. Система уплотнения состоит из трех компонентов (лабиринтное уплотнение с V-образной манжетой и О-образная манжета). Такая конструкция гарантируют защиту подшипников против агрессивных жидких и твердых веществ.

Инструкция по выбору теплового реле для защиты электродвигателя

Чтобы правильно выбрать номинал теплового реле нам необходимо узнать его In (рабочий, номинальный ток) и уже опираясь на эти данные можно подобрать правильный диапазон уставки аппарата.

Правилами технической эксплуатации ПУЭ оговорен этот момент и допускается устанавливать до 125% от номинального тока во взрывобезопасных помещениях, и 100%, т.е. не выше номинала двигателя во взрывоопасных.

Как узнать In? Эту величину можно посмотреть в паспорте электродвигателя, табличке на корпусе.

Характеристики АИР80

Как видно на табличке (для увеличения нажмите на картинку) указаны два номинала 4.9А/2.8А для 220В и 380В. Согласно нашей схеме включения нужно выбрать ампераж, ориентируясь на напряжение, и по таблице подобрать реле для защиты электродвигателя с нужным диапазоном.

Технические характеристики реле серии РТЛ

Для примера рассмотрим, как выбрать тепловую защиту для асинхронного двигателя АИР 80 мощностью 1.1 кВт, подключенного к трехфазной сети 380 вольт. В этом случае наш In будет 2.8А, а допустимый максимальный ток «теплушки» 3.5А (125% от In). Согласно каталогу нам подходит РТЛ 1008-2 с регулируемым диапазоном 2.5 до 4 А.

Что делать, если паспортные данные не известны?

Для этого случая рекомендуем использовать токовые клещи или мультиметр С266, конструкция которого также включает токоизмерительные клещи. С помощью данных приборов нужно определить ток мотора в работе, измерив его на фазах.

В том случае, когда на таблице частично читаются данные, размещаем таблицу с паспортными данными асинхронных двигателей широко распространенных в народном хозяйстве (тип АИР). С помощью нее возможно определить In.

Сводная таблица АИР

Кстати, недавно мы рассмотрели принцип действия и устройство тепловых реле, с чем настоятельно рекомендуем вам ознакомиться!

В зависимости от токовой нагрузки будет различаться и время срабатывания защиты, при 125% должно быть порядка 20 минут. В диаграмме ниже указана векторная кривая зависимости кратности тока от In и времени срабатывания.

Диаграмма

Напоследок рекомендуем просмотреть полезное видео по теме:

Надеемся, прочитав нашу статью, вам стало понятно, как выбрать тепловое реле для двигателя по номинальному току, а также мощности самого электродвигателя. Как вы видите, условия выбора аппарата не сложные, т.к. можно без формул и сложных вычислений подобрать подходящий номинал, используя таблицу!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector