Alma38.ru

Электро Свет
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое симистор (триак) и как он работает. Проверка мультиметром

Что такое симистор (триак) и как он работает. Проверка мультиметром

Современные тенденции в технике любого типа и вида — замена механических и электромеханических элементов на электронные или полупроводниковые. Они имеют более миниатюрные размеры, работают надежнее, позволяют реализовать более широкую функциональность. Во многих электронный устройствах применяется тиристор, или его подвид — симистор. О том, что это за прибор, как он работает и для чего используется и будем говорить.

Что это за устройство, его обозначение

Симистор — это симметричный тиристор. В англоговорящих странах используется название triak, встречается и у нас транслитерация этого названия — триак. Понять принцип его работы несложно, если знаете как работает тиристор. Если коротко, тиристор пропускает ток только в одном направлении. И в этом он похож на диод, но ток проходит только при появлении сигнала на управляющем выводе. То есть, ток проходит только при определенных условиях. Прекращается его «подача» при снижении силы тока ниже определенного значения или разрывом цепи (даже кратковременным). Так как симистор, по сути, двусторонний тиристор, при появлении управляющего сигнала он пропускает ток в обоих направлениях направления.

В открытом состоянии симистор проводит ток в обоих направлениях.

На схеме он изображается как два включенных навстречу друг на другу тиристора с общим управляющим выводом.

Внешний вид симистора и его обозначение на схемах

Внешний вид симистора и его обозначение на схемах

Симистор имеет три вывода: два силовых и один управляющий. Через силовые выводы можно пропускать ток высокого напряжение, на управляющий подаются низковольтные сигналы. Пока на управляющем выводе не появится потенциал, ток не будет протекать ни в одном направлении.

Где используется и как выглядит

Чаще всего симистор используется для коммутации в цепях переменного тока (подачи питания на нагрузку). Это удобно, так как при помощи напряжения малого номинала можно управлять высоковольтным питанием. В некоторых схемах ставят симистор вместо обычного электромеханического реле. Плюс очевиден — нет физического контакта, что делает включение питания более надежным. Второе достоинство — относительно невысокая цена. И это при значительном времени наработки и высокой надежности схемы.

Минусы тоже есть. Приборы могут сильно нагреваться под нагрузкой, поэтому необходимо обеспечить отвод тепла. Мощные симисторы (называют обычно «силовые») монтируются на радиаторы. Еще один минус — напряжение на выходе симистора пилообразное. То есть подключаться может только нагрузка, которая не предъявляет высоких требований к качеству электропитания. Если нужна синусоида, такой способ коммутации не подходит.

Заменить симистор можно двумя тиристорами. Но надо правильно подобрать их по параметрам, да и схему управления придется переделывать - в таком варианте управляющих вывода два

Заменить симистор можно двумя тиристорами. Но надо правильно подобрать их по параметрам, да и схему управления придется переделывать — в таком варианте управляющих вывода два

По внешнему виду отличить тиристор и симистор нереально. Даже маркировка может быть похожей — с буквой «К». Но есть и серии, у которых название начинается с «ТС», что означает «тиристор симметричный». Если говорить о цоколевке, то это то, что отличает тиристор от симистора. У тиристора есть анод, катод и управляющий вывод. У симистора названия «анод» и «катод» неприменимы, так как вывод может быть и катодом, и анодом. Так что их обычно называют просто «силовой вывод» и добавляют к нему цифру. Тот который левее — это первый, который правее — второй. Управляющий электрод может называться затвором (от английского слова Gate, которым обозначается этот вывод).

Принцип работы симистора

Давайте разберем, как работает симистор на примере простой схемы, в которой переменное напряжение подается на нагрузку через электронный ключ на базе этого элемента. В качестве нагрузки представим лампочку — так удобнее будет объяснять принцип работы.

Схема реле на симисторе (триаке)

Схема реле на симисторе (триаке)

В исходном положении прибор находится в запертом состоянии, ток не проходит, лампочка не горит. При замыкании ключа SW1 питание подается на на затвор G. Симистор переходит в открытое состояние, пропускает через себя ток, лампочка загорается. Поскольку схема работает от сети переменного напряжения, полярность на контактах симистора постоянно меняется. Вне зависимости от этого, лампочка горит, так как прибор пропускает ток в обоих направлениях.

Читайте так же:
Монтажная плата для выключателей открытой установки

При использовании в качестве питания источника переменного напряжения, ключ SW1 должен быть замкнуть все время, пока необходимо чтобы нагрузка была в работе. При размыкании контакта во время очередной смены полярности цепь разрывается, лампочка гаснет. Зажжется она снова только после замыкания ключа.

Если в той же схеме использовать источник постоянного тока, картина изменится. После того как ключ SW1 замкнется, симистор откроется, потечет ток, лампочка загорится. Дальше этот ключ может возвращаться в разомкнутое состояние. При этом цепь питания нагрузки (лампочки) не разрывается, так как симистор остается в открытом состоянии. Чтобы отключить питание, надо либо понизить ток ниже величины удержания (одна из технических характеристик), либо кратковременно разорвать цепь питания.

Сигналы управления

Управляется симистор не напряжением, а током. Для открытия на затвор надо подать ток определенного уровня. В характеристиках указан минимальный ток открывания — вот это и есть нужная величина. Обычно ток открывания совсем небольшой. Например, для коммутации нагрузки на 25 А, подается управляющий сигнал порядка 2,5 мА. При этом, чем выше напряжение, подаваемое на затвор, тем быстрее открывается переход.

Схема подачи напряжения для управления симистором

Схема подачи напряжения для управления симистором

Чтобы перевести симистор в открытое состояние, напряжение должно подаваться между затвором и условным катодом. Условным, потому что в разные моменты времени, катодом является то один силовой выход, то другой.

Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов (так называемые четырёхквадрантные симисторы) могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток (а именно, больший управляющий ток требуется в четвёртом квадранте, то есть когда напряжение на условном аноде имеет отрицательную полярность, а на управляющем электроде — положительную).

Как проверить симистор

Привычка проверять все элементы пред пайкой приходит с годами. Проверить симистор можно при помощи мультиметра и при помощи небольшой проверочной схемы с батарейкой и лампочкой. В любом случае надо сначала разобраться, как располагаются выводы на вашем приборе. Сделать это можно по цоколевке каждой конкретной серии. Для этого в поисковик забиваем маркировку, которая есть на корпусе. В некоторых случаях можно добавить «цоколевка». Если есть русскоязычные описания, будет несколько проще. Если на русском информации нет, придется искать в интернете. Заменяем слово «цоколевка» словом «datasheet». Иногда можно ввести русскими буквами «даташит». В переводе это «техническая спецификация». По имеющимся в описании таблицам и рисункам легко понять, где расположены силовые выходы (T1 и T2), а где затвор (G).

Пример цоколевки. Все можно понять и без знания языка

Пример цоколевки. Все можно понять и без знания языка

С мультиметром

Проверка мультиметром симистора основана на принципе его работы. Берем обычный мультиметр, ставим его в положение прозвонки. Силовые выходы между собой должны звониться в обоих направлениях. Прикасаемся щупами к выходам Т1 и Т2. На экране должны высвечиваться цифры. Это сопротивление перехода. Если поменять щупы местами, сопротивление может измениться, но ни обрыва, ни короткого быть не должно.

Проверяем мультиметром

Зато между затвором и силовыми выходами должен быть «обрыв» (бесконечно большое сопротивление). То есть, «звониться» они не должны при любом расположении щупов. Проверив сопротивление между разными выводами, можно сделать вод о работоспособности симистора.

С лампочкой и батарейкой

Для проверки симистора без мультиметра придется собрать простенькую проверочную схему с питанием от девятивольтовой батарейки «Крона». Нужны будут три провода длиной около 20 см. Провода желательно гибкие, многожильные. Проще, если они будут разных цветов. Лучше всего красный, синий и любой другой. Пусть будет желтый. Синий разрезаем пополам, припаиваем лампочку накаливания на 9 В (или смотрите по напряжению, которое выдает ваша батарейка). Один кусок провода на резьбу, другой — на центральный вывод с нижней части цоколя. Чтобы работать было удобнее, на каждый провод лучше припаять «крокодилы» — пружинные зажимы.

Читайте так же:
Параметры автоматических выключателей таблица

Как проверить симистор без мультиметра

Как проверить симистор без мультиметра

Собираем схему. Подключаем провода в таком порядке:

  • Красный одним концом на плюс кроны, вторым — на вывод Т1.
  • Синий — на минус кроны и на Т2.
  • Желтый провод одним краем цепляем к затвору G.

После того как собрали схему, лампочка не должна гореть. Если она горит, симистор пробит. Если не горит, проверяем дальше. Свободным концом желтого провода кратковременно прикасаемся к Т2. Лампочка должна загореться. Это значит, что симметричный тиристор открылся. Чтобы его закрыть, надо коснуться проводом вывода Т1. Если все работает, прибор исправен.

Как избежать ложных срабатываний

Так как для срабатывания симистора достаточно небольшого потенциала, возможны ложные срабатывания. В некоторых случаях они не страшны, но могут привести и к поломке. Поэтому лучше заранее принять меры. Есть несколько способов уменьшить вероятность ложных включений:

  • Уменьшить длину линии к затвору, соединять цепь управления — затвор и Т1 — напрямую. Если это невозможно, использовать экранированный кабель или витую пару.
  • Снизить чувствительность затвора. Для этого параллельно ставят сопротивление (до 1 кОм).

Практически во всех схемах с симисторами в цепи затвора есть резистор, уменьшающий чувствительность прибора

Практически во всех схемах с симисторами в цепи затвора есть резистор, уменьшающий чувствительность прибора

Как уже говорили, симистор управляется током. Это дает возможность подключать его напрямую к выходам микросхем. Есть одно ограничение — ток не должен превышать максимально допустимый. Обычно это 25 мА.

Особенности монтажа

Так же как и тиристоры, симисторы при работе греются, поэтому при сборке необходимо обеспечивать отвод тепла. Если нагрузка маломощная или питание импульсное (кратковременное подключение на промежуток менее 1 сек) допускается монтаж без радиатора. В остальных случаях необходимо обеспечить качественный контакт с охлаждающим устройством.

Есть три способа фиксации симистора на радиаторе: клепка, на винте и на зажиме. Первый вариант при самостоятельном монтаже не рекомендуется, так как существует высокая вероятность повреждения корпуса. Наиболее простой способ монтажа в домашних условиях — винтовой.

Порядок монтажа симистора

Порядок монтажа симистора

Перед тем, как начинают монтаж, осматривают корпус прибора и радиатора (охладителя) на предмет царапин и сколов. Их быть не должно. Затем поверхность протирают от загрязнений чистой ветошью, обезжиривают, накладывают термопасту. После чего вставляют в отверстие с резьбой в радиаторе и зажимают шайбу. Крутящий момент должен быть 0.55Nm- 0.8Nm. То есть, необходимо обеспечить должный контакт, но перетягивать тоже нельзя, так как есть риск повредить корпус.

Схема регулятора мощности для индуктивной нагрузки на симисторе

Схема регулятора мощности для индуктивной нагрузки на симисторе

Обратите внимание, что монтаж симистора производится до пайки. Это снижает механическую нагрузку на отводы прибора. И еще: при установке следите за тем, чтобы корпус плотно прижимался к охладителю.

Простая схема диммера на 220В для сборки своими руками

Диммер – электронное устройство, позволяющее управлять напряжением в нагрузке, а значит, и мощностью. Реализовать регулировку можно несколькими способами. Но наиболее распространён фазовый способ, суть которого состоит в управлении во времени моментом отпирания силового ключа (транзистора, тиристора). В сетях переменного тока лучше всего зарекомендовали себя диммеры на основе симметричного тиристора (симистора) в виде простой и недорогой конструкции. Как сделать диммер своими руками из доступных деталей, описано в этой статье.

Схема и принцип её работы

Практически все современные симисторные диммеры бытового назначения имеют общую элементную базу. Все остальные детали схемы выполняют дополнительные функции: осуществляют индикацию, способствуют стабильной работе на пониженном напряжении, делают регулировку более плавной и так далее.

схема диммера

Принцип действия симисторного регулятора рассмотрим на примере наиболее распространённой схемы диммера на 220 вольт, представленной на рисунке. Основной элемент схемы – симистор VS1. Он пропускает ток в обоих направлениях при появлении на управляющем электроде отпирающего импульса. Силовые электроды VS1 подключаются последовательно с нагрузкой. Поэтому ток нагрузки равен току симистора. В цепи управления силовым ключом расположен динистор VS2, открытое и закрытое состояние которого зависит от величины напряжения на его электродах. Элементы R1, R2 и С1 участвуют в цепи заряда конденсатора С1. Диод VD1 и светодиод LED образуют цепь индикатора включенного состояния. При включении диммера симистор закрыт и ток нагрузки не протекает. В момент появления очередной положительной или отрицательной полуволны сетевого напряжения через резисторы R1 и R2 начинает протекать ток. Конденсатор С1 заряжается со скоростью, которая определяется сопротивлением указанных резисторов. Ввиду того что напряжение на конденсаторе не может измениться мгновенно, образуется некоторый фазовый сдвиг между напряжением в сети и на С1. При достижении на конденсаторе напряжения равного напряжению срабатывания динистора (32В), последний открывается, что приводит к появлению импульса на управляющем электроде VS1 и его отпиранию. Через нагрузку протекает ток. Симистор находится в открытом состоянии до окончания полуволны (смены полярности) сетевого напряжения. Затем процесс повторяется.

За счёт изменения сопротивления R2 происходит увеличение (уменьшение) фазового сдвига. Чем больше сопротивление, тем дольше будет заряжаться конденсатор и тем меньше будет время открытого состояния симистора. Другими словами, вращение ручки регулятора приводит к изменению мощности в нагрузке.

Печатная плата и детали сборки

Для того чтобы собрать представленный диммер своими руками, потребуются следующие радиодетали:

  • С1 – неполярный металлоплёночный конденсатор ёмкостью 0,022-0,1 мкФ-400В;
  • R1 – резистор 4,7-27 кОм-0,25 Вт;
  • R2 – переменный резистор со встроенным выключателем 0,5-1 МОм-0,5 Вт;
  • VD1 – выпрямительный диод 1N4148, 1N4002 или аналогичные;
  • VS1 – симистор BT136-600D или BT136-600E;
  • VS2 – динистор DB3;
  • LED – светодиод индикаторный.

Диммер в приведенной комплектации рассчитан на подключение электроприбора мощностью не более 500 Вт. Если мощность нагрузки превышает 150 Вт, то симистор крепят на радиатор. Печатная плата 25 на 30 мм доступна для скачивания здесь.

Область применения

В повседневной жизни диммер чаще всего применяют для регулировки яркости ламп освещения. Подключая его в цепь питания галогенных ламп, получают готовое устройство плавного розжига света, которое в разы продлевает срок службы осветительного прибора. Часто радиолюбители собирают диммер своими руками для регулировки нагрева паяльника. Регулятор мощности с увеличенной нагрузочной способностью можно использовать для изменения скорости вращения электродрели.

Запрещено подключать диммер к электроприборам, которые содержат электронный блок обработки сигнала (например, блок питания). Исключение составляют светодиодные лампы с возможностью диммирования.

Тема: Симисторное управление индуктивной нагрузкой на переменном токе.

Симисторное управление индуктивной нагрузкой на переменном токе.

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Симисторное управление индуктивной нагрузкой на переменном токе.

Сообщение от frezer

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Симисторное управление индуктивной нагрузкой на переменном токе.

Сообщение от frezer

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Симисторное управление индуктивной нагрузкой на переменном токе.

Сообщение от uriy

Если Вы не знаете принцип работы симистора, то не надо писать чушь!

———- Сообщение добавлено 14:18 ———- Предыдущее сообщение было 14:18 ———-

Сообщение от Alto

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Симисторное управление индуктивной нагрузкой на переменном токе.

Сообщение от frezer

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Симисторное управление индуктивной нагрузкой на переменном токе.

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Симисторное управление индуктивной нагрузкой на переменном токе.

Сообщение от Pest

Вот по первой же ссылке в гугле.

Красным обведено то, о чём я говорю. may be even damaged, переводится как — может быть даже поврежден. Так что не нужно досконально знать как работает симистор, что бы на своём опыте узнать что они пробиваются порой не обратимо.

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Симисторное управление индуктивной нагрузкой на переменном токе.

Сообщение от uriy

Ток через индуктивную нагрузку не может превышать рабочего тока симистора, поэтому о тепловом пробое после электрического, разговора быть не может.
Вот "помехонаведение" в сеть, похоже единственное что имеет обоснование.

———- Сообщение добавлено 15:42 ———- Предыдущее сообщение было 15:36 ———-

Сообщение от uriy

Вот по первой же ссылке в гугле.

Красным обведено то, о чём я говорю. may be even damaged, переводится как — может быть даже поврежден. Так что не нужно досконально знать как работает симистор, что бы на своём опыте узнать что они пробиваются порой не обратимо.

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Симисторное управление индуктивной нагрузкой на переменном токе.

Сообщение от frezer

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Симисторное управление индуктивной нагрузкой на переменном токе.

Сообщение от uriy

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Симисторное управление индуктивной нагрузкой на переменном токе.

Сообщение от frezer
Сообщение от frezer

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Симисторное управление индуктивной нагрузкой на переменном токе.

Сообщение от uriy

  • Просмотр профиля
  • Сообщения форума
  • Созданные темы

Re: Симисторное управление индуктивной нагрузкой на переменном токе.

Сообщение от frezer

Вижу ситуацию следующим образом. Вы спросили, мы ответили. Я честно говоря не готов объяснить почему выходит из строя комутирующий элемент, знаю только, что выбивает его, но не часто. Думаю дело в том, что симистор не предназначен для работы динистором и имеет неравномерности в структурах, по которым побежит ток пробоя превышения, эти места точечно перегреются. Выбирайте тогда симистор на который указаны напряжение, ток, периодичность лавинного пробоя. Пока же мы спорим о симисторе в вакууме, индуктивность нагрузки ее сердечник неизвестны, про коммутирующий элемент тоже ничего не знаем. Я перестраховщик и поставил бы эту цепочку не рассчитывая, что нагрузка будет определенной, я бы взял худший вариант нагрузки и от него бы отталкивался, например выброс эдс 2киловольта с током 1000 ампер длительностью 1 микросекунду. Конденсатор с резистором запросто такое съедят, а вот симистор.

———- Сообщение добавлено 22:00 ———- Предыдущее сообщение было 21:47 ———-

П.С. Вы говорите, что размыкание произойдет при нулевом напряжении, но вы уверены, что колебательный контур из индуктивности и емкости нагрузки настроен на 50Гц? Ведь иначе бросок тока неизбежен даже при нуле.

Схема диммера для светодиодных ламп на 220В

Регулировать яркость освещения в комнате, где установлена люстра с несколькими лампами накаливания, не представляет труда. Берем выключатель на несколько кнопок и при необходимости включаем либо выключаем часть ламп.

Даже если люстра рассчитана на одну лампу, ее яркость можно изменять в широких пределах увеличивая либо уменьшая подаваемое напряжение. Светодиод работает в очень узком диапазоне напряжения и при его снижении просто гаснет.

Для изменения яркости светодиодных ламп используют диммер, представляющий собой ШИМ-контроллер (контроллер с широтно-импульсной модуляцией мощности).

Принцип широтно-полюсной модуляции (ШИМ)

Изменения мощности питающего напряжения при применении шим-контроллера обеспечивается благодаря подаче на коммутирующий элемент (в случае со светодиодами – полевой транзистор, симистор либо динистор) сигналов с изменяющейся скважностью.

Период импульса

S=T/T1, где Т – период импульсов, Т1 – период положительного фронта.

В ШИМ-контроллере импульсы следуют с постоянной частотой, изменяется лишь длительность пауз.

Ниже представлена принципиальная схема ШИМ-контроллера:

Принципиальная схема шим контроллера

Увеличение ширины импульса увеличивает время поступления тока через транзистор к нагрузке, следовательно, и пропускаемый ток. Частота следования импульса значительно выше той, которую способен уловить глаз, обычно 100-200Гц, потому мерцания светодиодов мы не ощущаем. Преимущество регуляторов нагрузки на основе ШИМ-контроллеров, значительно более высокий КПД сравнительно с резистивными, поскольку избыточная нагрузка гасится, а не потребляется.

Принцип работы ШИМ модулятора

Подключение диммера в схему питания светодиодной лампы

Существует два варианта подключения:

  1. Схема подключения перед драйвером питания, когда диммируется переменное напряжение;
  2. Подключение после драйвера питания, с ШИМ-регуляцией постоянного напряжения.

Подключение диммера к схеме питания

Промышленные варианты диммеров для светодиодных ламп

Тип управления диммером:

  • Инфракрасный;
  • Радио;
  • Стационарный.
  • 12V;
  • 220V.

Диммер как замена выключателюДиммер, монтируемый вместо выключателя, с пультом дистанционного управления. Обычно устанавливаются при переоборудовании обыкновенного освещения лампами накаливания на светодиодные ленты.

Диммер монтируется перед драйвером питания

Диммер, устанавливаемый перед драйвером питания светодиодов на дистанционном управлении с инфракрасным управлением.

Диммер с радио управлениемОбразец с управлением через радиоканал. В отличие от инфракрасного передатчика, такой пульт способен включить освещение даже с улицы.

Выпускают образцы с механическим либо сенсорным управлением. Есть даже модели, позволяющие управлять освещением с помощью смартфона через WiFi.

Основной недостаток всех устройств – достаточно высокая цена.

Если у вас нет желания переплачивать за ненужные функции, изготовить диммер для светодиодных ламп 220в своими руками совсем не сложно.

Собираем диммер своими руками

Схема на симисторах:

Схема диммера на семисторах

В этой схеме задающий генератор построен на двух симисторах, триаке VS1 и диаке VS2. После включения схемы конденсаторы начинают заряжаться через резисторную цепочку. Когда напряжение на конденсаторе достигает напряжения открытия симистора, через них начинает течь ток, а конденсатор разряжается. Чем меньше сопротивление резистора, тем быстрее заряжается конденсатор, тем меньше скважнось импульсов.

Изменение сопротивления переменного резистора регулирует глубину стробирования в широком диапазоне. Такую схему можно использовать не только для светодиодов, но и для любой сетевой нагрузки.

Подключение диммера в качестве выключателя

Схема подключения к сети переменного тока:

Диммер в качестве выключателя

Диммер на микросхеме N555

Диммер на микросхеме N555

Микросхема N555 представляет собой аналогово-цифровой таймер. Важнейшее ее преимущество – способность работать в большом диапазоне питающего напряжения. Обыкновенные микросхемы с TTL логикой работают от 5В, а логическая единица у них – 2,4В. КМОП серии более высоковольтные.

Но схема генератора с возможностью изменения скважности получается достаточно громоздкая. Так же у микросхем со стандартной логикой повышение частоты уменьшает напряжение выходного сигнала, что не даёт возможность коммутировать мощные полевые транзисторы и подходит лишь для небольших по мощности нагрузок.

Таймер на микросхеме N555 идеально подходит для шим-контроллеров, поскольку одновременно позволяет регулировать и частоту, и скважность импульсов. Напряжение на выходе составляет около 70% напряжения питания, за счёт чего ей можно управлять даже мосфетовскими полевыми транзисторами с током до 9А. При крайне низкой стоимости используемых деталей затраты на сборку составят 40-50 рублей.

А эта схема позволит управлять нагрузкой на 220В с мощностью до 30 Вт:

Микросхему ICEA2A после небольшой доработки можно безболезненно заменить менее дефицитной N555. Затруднение может вызвать необходимость самостоятельной намотки трансформатора. Мотать обмотки можно на обычном Ш-образном каркасе от старого перегоревшего трансформатора на 50-100Вт. Первая обмотка — 100 витков эмалированного провода диаметр 0.224мм. Вторая обмотка — 34 витка проводом 0.75мм (площадь сечения допустимо уменьшить до 0.5мм), третья обмотка – 8 витков проводом 0.224 – 0.3мм.

Диммер на тиристорах и динисторах

Светодиодный диммер 220В с нагрузкой до 2А:

Диммер 220В с нагрузкой до 2А

Это двухмостовая полуволновая схема состоит их двух зеркальных каскадов. Каждая полуволна напряжения проходит через свою цепочку тиристор-динистор. Глубина скважности регулируется переменным резистором и конденсатором.

При достижении определённого заряда на конденсаторе он открывает динистор, через который течёт ток на управляющий тиристор. При смене полярности полуволны процесс повторяется во второй цепочке.

Диммер для светодиодной ленты

Схема диммера для светодиодной ленты на интегральном стабилизаторе серии КРЕН.

Схема диммера на стабилизаторе КРЕН

В классической схеме подключения стабилизатора напряжения, значение стабилизации задается резистором, подключённым к управляющему входу. Добавление в схему конденсатора С2 и переменного резистора превращает стабилизатор в некое подобие компаратора.

Преимущество схемы в том, что она совмещает сразу и драйвер питания и диммер, поэтому подключение не требует дополнительных цепей. Недостаток – при большом количестве светодиодов на стабилизаторе будет значительное тепловыделение, что требует установки мощного радиатора.

Как подключить диммер к светодиодной ленте зависит от задач диммирования. Подключение перед драйвером питания светодиодов позволит регулировать только общую освещённость, а если собрать несколько диммеров для светодиода своими руками и установить их на каждый участок светодиодной ленты уже после блока питания, появится возможность регулировать зональное освещение.

«Диммер» с фиксированным уровнем яркости

Диммер с фиксированным уровнем яркости

Номинал резисторов 100-500 кОм, мощность 1-2 Вт.

Это даже не димер, поскольку ШИМ контроллера тут и близко нет. Но идеально подойдет для тех, кто взял первый раз в руки паяльник.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector