Alma38.ru

Электро Свет
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электротехнические шины. Типы и нормативы

Электротехнические шины. Типы и нормативы

В данной статье будут рассмотрены основные виды и типы электротехнических шин и регламентирующих их производство документов.

Электротехническая шина что это: это проводник с низким сопротивлением (активным и реактивным), к которому могут подсоединяться отдельные электрические цепи (в низковольтных установках и сетях) или высоковольтные устройства (электрические подстанции, высоковольтные РУ и т.д.). Использование шин обеспечивает экономию площади установки, материало- и трудозатрат. В качестве основного материала для изготовления электротехнических шин как правило используют алюминий и медь.

Производство шин регламентируется рядом ГОСТов и технических условий:

ГОСТ 15176-89 Шины прессованные электротехнического назначения из алюминия и алюминиевых сплавов. Технические условия. В ГОСТе регламентируются параметры, в соответствии с которыми должны изготовляться алюминиевые шины – толщина, ширина, длина, площадь поперечного сечения, диаметр окружности и соответствующая им масса на 1 метр для готовых шин. Указываются допустимые предельные отклонения от указанных величин, марки алюминия, требования к качеству, внешнему виду, механическим и электрическим параметрам. Приводятся правила маркировки, упаковки и приема шин данного типа.

ГОСТ 434-78 Проволока прямоугольного сечения и шины медные для электрических целей. Технические условия. В стандарте указаны номинальные размеры и расчетные сечения медных шин, марки меди, удельное электрическое сопротивление и предельные отклонения размеров. Приводятся допустимые длины шин и массы бухт, а также возможные отклонения от данных величин. Предъявляются требования к материалу изготовления шин, внешнему виду готовых изделий (допустимые дефекты, цвета). Изложены правила упаковки, транспортировки и хранения, приемки и испытаний.

ГОСТ 10434-82 Соединения контактные электрические. Классификация. Общие технические требования. Приведена классификация контактных соединений по таким параметрам как: область применения, климатическое исполнение и категории размещения электротехнических устройств, конструктивное исполнение. Указаны требования к конструкции, электрическим и механическим параметрам, надежности и безопасности в зависимости от классификации. Даны ссылки на ряд сопутствующих ГОСТов.

ГОСТ 8617-81 Профили прессованные из алюминия и алюминиевых сплавов. Технические условия. Приведена классификация профилей данного типа (по типу, по состоянию материала и типу прочности). Даны ссылки на ГОСТы с номинальными размерами, указаны величины предельных отклонений. Описаны технические требования к маркам алюминиевых сплавов для изготовления профилей, к механическим свойствам, допустимым дефектам, качеству поверхности и внешнему виду готовых изделий. Описаны условия транспортировки и хранения, правила приемки, методы испытаний.

ТУ 1-5-009-80 Шины электротехнические из алюминиевых сплавов.

ТУ 16.705.002-77. Шины алюминиевые прямоугольные. Описаны технические условия для изготовления алюминиевых шин прямоугольным сечением. Указаны номинальные и допустимые размеры, марки сплавов, электрические характеристики.

Согласно классификации, существует несколько типов шин

Сборная шина – это шина, к которой могут подключаться распределительные шины и блоки ввода/вывода.

Силовая шина (шина электропитания) – шина, которая служит для передачи энергии внутри силовых блоков и между элементами мощных преобразовательных устройств и характеризуется высокими значениями токов и напряжений. Силовая шина может являть собой твердую неизолированную шину, твердую шину в изоляции или конструкцию из набора чередующихся проводящих и изолирующих слоёв. Твердая неизолированная медная шина поставляется производителями с изолирующими шинодержателями различных типов и изолирующими экранами, исключающими непосредственный доступ к клеммам силовых шин. Данные шины характеризуют большая допустимая плотность тока и высокое напряжение изоляции. В качестве материала шин зачастую используется медь и медные сплавы, а также алюминий. По способу крепления силовые шины могут быть вертикальные, горизонтальные, изолированные, задние/ступенчатые и универсальные (мультистандартные).

Шина заземления – главная деталь заземляющей системы электроустановок и электросетей. Её также называют главная заземляющая шина ГЗШ. С шиной заземления соединяется рабочий ноль, защитные нулевые проводники и провода внешних заземлений. Обычно ГЗШ являет собой медную пластину с перфорированными отверстиями. Хотя иногда встречаются и стальные ГЗШ. Перед подключением к ГЗШ, провода заземления должны быть опрессованы наконечником для кабелей или соединительной гильзой, а затем уже подключены на болт с гайкой (например М5). Шина также комплектуется опорными изоляторами с крепежом.

Шины для крепления на DIN-рейке – шины, применяемые для крепления на монтажных рейках в электрических щитах или шкафах управления. Данный тип шин зачастую производят из латуни или луженой меди, а диэлектрическое основание, которым осуществляется крепление к монтажным рейкам, из полиамида. Шинами на din-рейку являются нулевые шины, коммутирующие в щитах нулевые провода и провода заземления, или же распределительные шины. Встречаются также шины на din-рейку в корпусе. Такие шины называются распределительными шинами в блоке или распределительными блоками.

Распределительная шина – это шина, подключенная к сборной шине и питающая устройство вывода. Данная шина входит в состав одной секции НКУ (низковольтного устройства распределения и управления). Одним из видов распределительных шин являются соединительные или гребенчатые шины. Они предназначены для параллельного включения модульных автоматов, УЗО, дифференциальных автоматов, контакторов и т.д. Гребенчатые шины исполняются из медной пластины прямоугольного сечения и помещаются в пластиковый корпус.

Читайте так же:
Настройка концевых выключателей nice

Частным случаем распределительных шин являются ступенчатые распределительные блоки. Блоки состоят из ступенчатых изоляционных опор, с помощью которых осуществляется крепление, и как правило 4-х медных шин. На шинках находятся отверстия: резьбовые (М6) для отходящих цепей и без резьбы для питания распределительного блока. Блок может устанавливаться как горизонтально (в зоне коммутационного оборудования), так и вертикально (в кабельном канале шкафа). К лицевой части блока крепится изолирующий экран.

Номинальные значения параметров шин указаны в приведенных в начале статьи ГОСТах. Поэтому далее в статье будут приведены лишь ключевые характеристики различных типов шин.

Выпуск алюминиевых шин марки ШАТ регламентирует ТУ 16-705 002-77. Данные шины изготавливают прямоугольным сечением. Диапазон изменения ширина шины ШАТ – от 10 до 120 мм, толщины – от 3 до 12 мм, поперечного сечения – от 30 до 1440 мм 2 . Величина удельного сопротивления не больше 0,0282 мкОм*м. Шины марок АД0 и АД31 (ГОСТ 11069-79 и ГОСТ 15176-89) изготавливаются прямоугольным сечением площадью от 30 до 25800 мм 2 . Диапазон изменения толщины данных шин – от 3 мм до 110 мм, ширины – от 6 мм до 500 мм. Значение удельного сопротивления постоянному току: шины АД0 – до 0.029 мкОм*м; шины АД31 – от 0,0325 до 0,0350 мкОм*м (зависит от типа). Диапазон длительно допустимых токов (определяется сечением шины) – от 165 А до 2300 А. Для производства шин используется алюминий А5, А5Е, А6, А7, АД00, АД0 и алюминиевые сплавы АД31 и АД31Е. Для изменения свойств материала используются следующие технологии: закаливание и естественное состаривание, закаливание и искусственное состаривание, не полное закаливание и искусственное состаривание, а также горячее прессование (без термической обработки). Длина алюминиевых шин зависит от площади поперечного сечения и должна быть равной или кратной: от 3 до 6 м для шин сечением до 0.8 см 2 ; от 3 до 8 м – для шин сечением от 0.8 до 1.5 см 2 ; от 3 до 10 м – для шин сечением более 1.5 см 2 . Колебания в длине – не более 20мм. Алюминиевые шины отличаются малым весом и невысокой стоимостью.

Медные шины согласно ГОСТ 434-78 выпускаются таких марок: ШММ – шина медная мягкая, ШМТ – шина медная твердая, ШМТВ – шина медная твердая из бескислородной меди. Минимальная и максимальная ширина медных шин – 16 мм и 120 мм, толщина – 4 мм и 30 мм, поперечное сечение – 159 мм 2 и 1498 мм 2 . Значение удельного электрического сопротивления – не больше 0,01724 мкОм*м. Диапазон длительно допустимых токов – от 210 до 2950 А (шина 120х10) и выше при большей толщине, для гибкой медной шины – от 280 до 2330 А. Масса шин в бухте должна быть в пределах от 35 кг до 150 кг. Длина шин согласно ГОСТ – от 2 до 6 м. Твердые медные шины в сравнении с мягкими обладают меньшей проводимостью и применяются там, где требуется прочный и неподвижный шинопровод. Для изготовления мягких шин используется медь марок М1, М1М, М2. Гибкие шины более распространены, они обладают большей прочностью, долговечностью и лучшими характеристиками. Для изготовления шин из бескислородной меди используют особые медные сплавы, не имеющие в своем составе оксидов. Медные шины отличают такие преимущества в сравнении с алюминиевыми: высокая удельная проводимость (в 1,6 выше чем у алюминиевых шин), механическая прочность, теплопроводность и гибкость, коррозийная стойкость, стыковые контакты с другими шинами не окисляются. По причине высокой окисляемости на открытом воздухе и хрупкости, применение алюминиевых шин имеет ряд ограничений. Они не используются в машинах и механизмах с подвижными частями или вибрирующим корпусом. Поэтому в случаях, когда к токоведущим частям предъявляются повышенные требования, применяются медные шины.

Шины являют собой токоведущие части электрических установок, соединяя между собой оборудование различного типа: генераторы, трансформаторы, синхронные компенсаторы, выключатели, разъединители, контакторы и т.д. Током нагрузки определяется сечение шин, также учитывается устойчивость к току к.з.

Шинный мост из жестких неизолированных шин применяется: на выводах генераторов, на входах главных распределительных устройств, в соединениях трансформатора с РУ и КРУ на 6 – 10 кВ, ГРУ и трансформатора связи.

Соединения из жестких неизолированных шин прямоугольным или коробчатым сечением выполняются в закрытых РУ 6 – 10 кВ (в том числе сборные шины), в качестве соединений между ГРУ и трансформатором собственных нужд, между шкафами распределительных щитов. Шины коробчатого сечения рекомендуют использовать при больших токах, они обеспечивают меньшие потери и лучшее охлаждение. Крепление жестких шин осуществляется с помощью опорных изоляторов. Гибкие шины применяются в РУ на 35 кВ и выше, в соединениях блочных трансформаторов с ОРУ.

Во всех типах соединений в низковольтных установках и сетях промышленного назначения для передачи, распределения электроэнергии и подключения управляющих устройств используются медные изолированные шины (как жесткие, так и гибкие). Конструктивно данные шины являют собой одну или несколько медных тонких пластин иногда луженых с концов, покрытых изолирующей оболочкой как правило из ПВХ или другого диэлектрика с высоким сопротивлением. Данные шины являются альтернативой как кабелям, так и жесткой ошиновке и могут служить соединением между: главной силовой машиной и распределительным оборудованием (контакторами, прерывателями цепи, переключателями и т.д.), выводом трансформатора и шинопроводом, шинопроводом и электрическим шкафом.

Читайте так же:
Подключение кондиционера через выключатель

Применение изолированных шин позволяет экономить место, так как шины можно располагать гораздо ближе друг к другу, чем в случае неизолированной ошиновки. Преимущества изолированных шин – устойчивость к коррозии и простота монтажа. Крепежные отверстия контактных площадок делаются пробивкой непосредственно в материале контакта, что лишает потребности в кабельных наконечниках и устраняет проблемы плохого присоединения контактов. Большим спросом пользуются именно гибкие изолированные медные шины типа ШМГИ. Их главное преимущество в сравнении с жесткими – более легкий монтаж, так как нет необходимости в специнструментах и резке шины, если нужен поворот в плоскости. Гибкая шина легко меняет форму в зависимости от потребностей монтажа. Однако ряд производителей выпускают твердые изолированные шины, в том числе и по запросу. Крепление изолированных шин осуществляется с использованием болта и контактных шайб. Затягивать необходимо ключом, имеющим ограничения по моменту затяжки. Крепеж не должен быть в смазке.

Еще одной разновидностью гибких шин являются медные плетённые шины типа ШМП. Такая шина сплетена из медных полос и является очень гибкой. Она используется в местах, подверженных сверхсильной вибрации, таких например, как трансформаторные шинные мосты. Данные шины также применяются для подключения различного оборудования к шинопроводам и линиям шин. Контактные площадки плетённых шин бывают как со сверлением, так и без.

Выпускаются также гибкие пластинчатые шины, изготовленные особым методом – диффузионной сварки под давлением. Тонкослойные материалы свариваются путем пропускания через них постоянного тока под давлением. Такие шины также называют пластинчатые шинные компенсаторы или гибкие пластинчатые шины. Они имеют большую токопроводимость и меньшее тепловыделение.

Шинные компенсаторы

Их применяют там, где необходимы компенсация теплового расширения, вибро- или сейсмоустойчивость, а также где происходит регулярный изгиб в одной оси. Например это могут быть: гибкие токопроводы для сварочных аппаратов, автоматических выключателей, шины питания для индукционных печей и печей сопротивления и т.д.

Жесткая медная шина более всего подходит для замены кабеля, используется в распределительных устройствах, а также для изготовления шинных сборок и шинопроводов. Производителями выпускаются как перфорированные так и гладкие шины различных размеров, в соответствии с ГОСТ. Производителями шин в настоящее время выпускается множество зажимов, соединителей и шинодержателей, облегчающих монтаж и обеспечивающих надёжный контакт. Зажимы предназначены для соединения жестких и гибких шин различного типа, биметаллические пластины – для алюминиевых и медных шин.

Шинодержатели выпускаются плоские, регулируемые плоские, компактные и усиленные, ступенчатые, а также универсальные.

Производителями предлагается широкий выбор изоляторов: опорные, проходные, изоляторы типа «лесенка». Все они используются для фиксации шин внутри шкафов и корпусов. Изоляторы одной стороной крепятся с помощью болтов к монтажному корпусу, с другой к ним крепится шина.

Зачем подключать автоматы через гребенку и как это сделать правильно?

Для начала рассмотрим конструкцию гребенки. Изделие состоит из медной пластины, помещенной в пластиковую изоляцию, не поддерживающую горение. От этой пластины отходят специальные подводы, благодаря которым и происходит соединение автоматов в щитке. Количество пластин соответствует количеству полюсов.

Учтите, существуют гребенки с шагом 18 и 27 мм. Первые предназначены для коммутации АВ, шириной, равной одному модулю. Соответственно 27 мм — это ширина в 1,5 модуля. Обращайте внимание на этот момент при выборе распределительной шины для собственных условий!

По количеству полюсов соединительные шины делятся на однополюсные, двухполюсные, трехполюсные и четырехполюсные. У каждого варианта исполнения свое назначение. К примеру, однополюсная гребенка использует для подключения однофазного автоматического выключателя, а четырехполюсная, соответственно, для монтажа трехфазных УЗО на 4 полюса (три фазы и ноль).

Количество отводов может составлять от 12 до 60, поэтому применение гребенок для соединения двух электрических автоматов не является рациональным решением. Целесообразно использовать распределительную шину при сборке больших щитков.

Сами отводы могут быть штыревыми (маркировка pin) или же вилочными (fork). Первые используются гораздо чаще, т.к. вилочные отводы подходят не для все автоматов, для них нужен специальных зажим.

Штыревой соединитель

Вилковый соединитель

Отдельный зажим

Подсоединение снизу

Последняя конструктивная особенность, о которой хотелось бы рассказать — поперечное сечение отводов. Как правило, отводы изготавливают сечение 16 мм.кв., чего вполне достаточно для того, чтобы выдержать токовую нагрузку в 63 А.

Преимущества и недостатки

Сначала поговорим о достоинствах соединительной шины для автоматических выключателей. Итак, гребенка имеет следующие плюсы при монтаже электропроводки:

  1. Более качественное соединение коммутационной аппаратуры. Если подключение перемычек представлено двумя концами провода в одном зажиме, то применение гребенчатой шины сокращает это значение в 2 раза, что положительно отображается на качестве контакта.
  2. Как мы уже сказали, соединительная гребенка доя автоматов способна выдержать до 63 А. Сделать шлейф из провода, сечением 16 мм.кв. будет гораздо сложнее.
  3. Разводка проводки в щите с применением распределительной шины выглядит более аккуратной, что видно на фото ниже:
Читайте так же:
Шнайдер электрик автоматические выключатели модульные

Внешний вид электрощита

Что касается недостатков, они следующие:

  1. Не всегда возможно подключить автоматы от разных производителей. Дело в том, что различные фирмы могут выпускать модульные коммутационные изделия разной высоты. В итоге, отвод не всегда достает до разъема для подключения АВ меньшего размера.
  2. Более проблематичная замена автоматических выключателей в щитке. Чтобы заменить один аппарат придется ослабить соединительную шину на всех разъемах, иначе поднять ее выше не получится, а без этого автомат не достать.
  3. Если возникает необходимость добавления еще одного АВ в щиток, придется либо менять гребенку полностью, либо подключать его перемычкой, что негативно повлияет на эстетический вид электрощитка. К тому же при замене придется отключить напряжение на всех питающих линиях, что иногда весьма нежелательно, особенно на производстве.

Кстати, соединительная шина гребенка может использовать для подключения не только автоматических выключателей, но и УЗО, а также дифавтоматов. О том, как подключить данный соединитель в щитке, мы расскажем далее.

Правила установки и подключения

Для начала нужно отмерить нужную длину гребенки (если остаток в любом случае будет) и отрезать кусок, который вам необходим. Резать шину для автоматов лучше всего ножовкой. Рекомендуем вам сам диэлектрический пластиковый корпус отрезать с запасом в 1-2 см, что позволит защитить токоведущие части и предотвратить короткое замыкание. По краям также необходимо поставить заглушки или заизолировать торцы обычной изолентой.

После того, как подходящая длина будет отрезана, переходим к подключению автоматических выключателей гребенкой. Здесь все просто, шину нужно разместить вверху, вставить штыревые отводы в соответствующие разъемы и затянуть винты. В один из зажимов, крайний, нужно подключить вводной питающий провод.

Подсоединение ввода

Подробно процесс подключения рассмотрен на видео примере:

Если же вы используете соединительную гребенку с вилковыми отводами, для их подключения у некоторых производителей автоматов (Hager, ABB) предусмотрен отдельный разъем (находится снизу), к которому и нужно произвести монтаж. Наглядно этот момент продемонстрирован на видео:

Как видите, ничего сложного в установке и подключении однорядной соединительной шины нет, как минимум, на примере соединения однополюсных АВ. Что касается УЗО, дифавтоматов и двухполюсных выключателей, их подсоединение будет выглядеть немного иначе.

В этом случае нужно использовать двухполюсную гребенку. Фазные и нулевые отводы таких шин расположены через один, поэтому вам нужно в соответствии с маркировкой произвести подключение (каждый отвод в свой разъем), после чего надежно затянуть винтовые зажимы.

Вот и все, что мы хотели рассказать вам о подключении соединительной шины для автоматов. Произвести монтаж своими руками сможет даже неопытный электрик. Главное, учитывать предоставленные рекомендации!

Управление домом при помощи KNX: освещение

Привет! Попробую рассказать, как можно построить систему управления домом при помощи системы KNX. Основные вопросы, которые я хочу осветить — подход к воплощению «умного дома» на KNX, ориентиры по стоимости, подводные камни. Если материал «зайдет», продолжу. Я не стремлюсь впихнуть невпихуемое: за пределами статьи останутся диммеры, управление RGB и подобное — пока что мы просто включаем и выключаем свет 🙂

TL;DR: это не так дорого, как может показаться на первый взгляд и достаточно надежно.

Подход

На мой (и не только) взгляд, «умный дом» — совокупность систем, которые упрощают жизнь. В идеале, функционирование большинства систем должно быть незаметно для конечного пользователя — настроил и забыл — это относится к системам управления освещением, отоплением, кондиционированием. В отличие от «классического» подхода, хочется иметь возможность тонкой настройки в процессе — далеко не все хотелки можно вообразить на этапах проектирования и пусконаладки.

Почему KNX? Пропуская маркетинг, отмечу основные преимущества системы:

  • KNX — децентрализованная система. Это значит, что при необходимости, можно заменить любой компонент, почти не оказывая влияния на остальные. В частности, нет централизованного контроллера, который бы управлял всем и вся. Разумеется, в бюджетных системах присутствуют точки отказа типа блоков питания, но с этим вполне можно мириться.
  • Система, по сути, не привязана к конкретному вендору — можно выбирать любое оборудование, исходя из потребностей, бюджета и эстетических предпочтений. Если хочется иметь выключатели одного немецкого производителя, контроллеры — другого и третьего, а термостаты — вообще итальянские — никто не препятствует. Как правило, взаимосвязи между устройствами прописываются без каких-либо проблем. Для примера, я использую оборудование MDT, но на его месте может быть все что угодно — выбор огромен.
  • Из предыдущих пунктов возникает еще один приятный момент: в любой момент систему можно расширять и улучшать. Условно, если изначально были установлены кнопочные выключатели, при возникновении потребности (и возможности) можно заменить их на сенсорные. Или вообще обвешаться многофункциональными экранами.
Читайте так же:
Сенсорный выключатель мебельный для зеркал

Общие принципы проектирования

KNX — в первую очередь шина. Двухпроводная, но при монтаже полагается использовать четырехпроводный кабель — рекомендуется JY(St)Y 2х2х0,8 — такой же, как в системах охранно-пожарной сигнализации. Используются две жилы — красная и черная, белая с желтой — про запас. Кабель — экранированный, наводок не боится.

Топологически, KNX — дерево, главное — не допускать колец. Терминирующих устройств не требуется.

Вся система делится на исполнительные устройства (акторы — управляемые реле разнообразного назначения), сенсоры (кнопки, выключатели, термостаты, погодные станции) и системные устройства — блоки питания, линейные соединители и прочее.

Управляем освещением

Предположим, нам нужно организовать управление освещением в небольшом доме — допустим, у нас два этажа, лесенка и несколько комнат — несколько спален, кабинет, санузлы и всякие проходные помещения типа лестничных пролетов, прихожих и тому подобного.

В простейшем случае, хочется следующего:

  1. Удобство. Например, если приходишь домой поздно, хочется сразу засветить прихожую, лестницу крыльцо и далее. Еще — включать/выключать свет в санузле по датчику присутствия.
  2. Борьба с забывчивостью. Лег спать, а из под двери пробивается свет из коридора. Ну и фиг с ним, пусть сам погаснет через, например, 10 минут.
  3. Возможность включать аварийное освещение — допустим, мы в спальне на втором этаже, а в дверь кто-то звонит — засветим сразу лестницу, коридор, крыльцо
  4. Возможность погасить весь дом при уходе

Это позволяет реализовать кучу всего на одном выключателе, но не всегда удобно в плане поиска нужной кнопки.

Для любителей классической электроустановки, можно вместо нативных выключателей KNX использовать обычные, с передачей сигнала в шину посредством сухого контакта, размещаемого под выключателем в монтажной коробке (на картинке — сухарь под четырехклавишный выключатель):

Исходя из количества групп и их назначения, можно выбрать многоканальное реле (не забываем учитывать токи нагрузки). Их производят примерно все, однако распространены устройства Gira, ABB, MDT, Zennio.

Дальше — план проводки. От щита к выключателям подводится только шинный кабель, тот самый JY(St)Y 2х2х0,8. К нагрузкам (светильникам) — соответствующий электрический кабель (ВВГ, NYM — по вкусу). Количество и расположение щитов — по вкусу. В трехэтажном таунхаусе я делал три этажных щита — в каждом по многоканальному реле для управления светом на этаже, так меньше электрического кабеля разматывать.

Приятный бонус: свободные каналы реле можно использовать для управления розетками. Однако, поскольку многоканальники имеют, как правило, небольшую мощность (токи до 10А), на розетки нужно использовать промежуточные реле соответствующей мощности.

Запуск

Итак, все провода протянуты, устройства установлены, щиты скоммутированы. Можно попробовать всё это запустить — потребуется та самая ETS. Я пропущу стартовые шаги — создание топологии здания в проекте, добавление устройств и т.д. Если интересно — спрашивайте в комментариях, попробую сделать базовый tutorial.

В соответствии с хотелками и количеством групп освещения, планируем групповую адресацию.
Группа — это такая сущность в шине, которую слушают привязанные к ней акторы и в которую пишут всякие значения сенсоры. Актор (например, канал реле) можно привязать к нескольким группам, сенсор будет писать в одну группу.

Например: на первом этаже есть четырехканальное реле, с которого мы включаем/выключаем свет на крыльце, в прихожей, санузле и гостиной.

Целесообразно предложить следующие группы (используем трехуровневую структуру групповых адресов, первый этаж — 0, освещение первого этажа — 0/0):

0/0/0 — весь свет первого этажа, привязан ко всем каналам
0/0/1 — свет на крыльце, канал А
0/0/2 — свет в прихожей, канал B
0/0/3 — свет в санузле, канал C
0/0/4 — свет в гостиной, канал D

Вот как это выглядит в среде программирования:

Далее, к группам привязываем выключатели, в соответствии с их расположением. Предположим, что мы используем двухклавишные выключатели со светодиодными индикаторами состояния, вот такие:

Например, в гостиной первая кнопка включает/выключает (toggle) свет в самой гостиной, а вторая — принудительно выключает весь свет на этаже:

Привязка света в гостиной:

Выключение всего света на этаже:

Для переключений (toggle), необходимо передавать с каналов реле в шину их состояния, чтобы выключатель знал, какое значение передать в шину.

При необходимости, привязываем диоды на выключателях к состоянию соответствующих каналов реле — смысл аналогичный, картинками грузить не буду.

Загружаем конфигурацию в устройства и наслаждаемся эффектом 🙂

Дальше начинаем играться с проектом реле — задержки отключения, функции автоматического отключения света, настройка проходных выключателей в неограниченном количестве и так далее — до получения нужного эффекта.

Читайте так же:
Что такое выключатель проходной определение

Сколько это стоит?

Вопрос, на самом деле, многогранный. Можно пойти в отечественный интернет-магазин и купить все буквально втридорога. Можно заказать где-нибудь в Европе — приведу немецкие ценники (от которых с удовольствием дают очень приятную скидку) для той минимальной инсталляции, которую только что описал:

1. Блок питания 320мА: 110 евро
2. Четырехканальное реле: 145 евро
3. Четыре выключателя: 65 евро за каждый

Итого — 515 евро, 130 евро за канал освещения. Не забываем про возможные скидки и про то, что более емкие дают более низкую стоимость канала освещения.

Для желающих сэкономить — имеет смысл иногда шерстить авито — иногда там распродают сладкие остатки, главное — следить за ценой.

Гребенчатые шины в щите на примере линейки Easy9

При ремонте в любой квартире или доме электрика занимает немалую часть работ и требует довольно значительных материальных затрат. Помимо выбора качественного и надежного оборудования за оптимальную цену важным моментом является выбор дизайна отдельных электрических устройств, таких как розетки, выключатели, а также электрический щиток. В отличии, например, от промышленных зданий, где электрические щиты в основном устанавливаются в специальных помещениях с ограниченным доступом сотрудников, в квартирах щиток находится на виду, а значит должен иметь презентабельный внешний вид, который как минимум должен не портить общий дизайн помещения, а как максимум вписываться в общий стиль или даже являться его дополнением.

Но выбрать дизайн щита и надежное и качественное оборудование для его сборки бывает недостаточно. Важным моментом является правильно собрать сам щит, чтобы обеспечить долгую и безопасную его работу и вот на этом этапе возникает много проблем.

Очень часто для того, чтобы соединить между собой модульные защитные устройства в щите, сборщики щитов используют куски обыкновенного кабеля подходящего сечения, делаю из них перемычки между устройствами. Такой способ сборки применяется из- за его простоты и экономичности, а кроме того, не всякий электрик может правильно подобрать нужное решение и аксессуары для организации распределения внутри щита.

Такой способ дает определенные преимущества в цене, но имеет серьезные недостатки, прежде всего с точки зрения надежности соединений и качества контактов, особенно в местах соединения нескольких кабелей. Вторым недостатком является, увеличение времени сборки щита т.к. процесс замеров нужной длины проводов, очистки от изоляции, придания нужной формы и правильная укладка в щите для экономии места требуют большого количества времени и трудозатрат со стороны сборщика. Важным недостатком также является большое количество кабелей в щите, которые мешают монтажу или демонтажу модульных устройств, создают запутанный монтаж, в котором трудно разобраться и ухудшают охлаждение оборудования в щите т.к. мешают правильной циркуляции воздуха.

Описанных выше сложностей можно избежать при использовании соединительных шин для модульных устройств. За свою форму их часто называют «гребенчатыми». Такие шины существуют нескольких видов. Например, в серии Easy9 от Schneider Electric представлены в 1-полюсном, 2-х полюсном, 3-х полюсном, а также исполнении 1 полюс + нейтраль для компактных дифавтоматов. В ассортименте помимо шин представлены также необходимые вводные клеммы и изоляционные аксессуары.

Использование гребенчатых шин или «гребенок», как их часто называют электрики, позволяет обеспечить максимально надежное соединение т.к. шина изготовляется из цельной пластины меди и не имеет соединений по всей своей длине. Кроме того, каждое устройство присоединяется к шине только через 1 проводник (контакт шины), что исключает риски ненадежного соединения в месте контакта и обеспечивает долговечную и надежную работу в течение долгого времени.

Использование вводных клемм вместе с гребенками позволяет решить задачи присоединения кабелей большого сечения.

При использовании гребенчатые шинки могут быть разрезаны на необходимое длину, при этом важно не забывать устанавливать на торцы заглушки т.к. они необходимы для обеспечения необходимой изоляции токоведущих частей и обеспечивают безопасность персонала при работе в щите. Все шины поставляются в комплекте с заглушками, при необходимости также можно заказать заглушки отдельным артикулом.

Для разных случаев применения набор дополнительных аксессуаров может быть различным, однако конструкция модульных устройств серии Easy9 в ряде случаев позволяет обходиться только гребенчатыми шинками. Расположение клемм нейтрали слева, а клемм фазы справа на ВДТ и АВДТ Schneider Electric позволяет распределять фазу с группового ВДТ на отходящие автоматы с помощью 1-полюсной гребенчатой шинки без использования кабельных перемычек, как указано на рисунке. При необходимости шинка может быть обрезана на нужную длину или как в данном случае, незадействованные контактные «зубцы» закрыты изолирующими колпачками.

Таким образом, использование гребенчатых шинок для распределения внутри электрического щита это один из способов обеспечить надежную и бесперебойную работу электрической сети и оборудования.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector