Alma38.ru

Электро Свет
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема включения сумеречного выключателя

Схема включения сумеречного выключателя

Самый простой сумеречный выключатель

Современная элементная база электроники значительно упрощает схемотехнику. Даже обычный сумеречный выключатель теперь можно собрать всего из трех детелей.

Достаточно часто возникают ситуации, когда с наступлением темноты требуется включение освещения. Это может быть вход в подъезд многоквартирного дома, крыльцо и двор частного домовладения, а то и просто освещение номера дома. Такое включение осуществляется, как правило, с помощью сумеречного выключателя.

Подобных схем разработано достаточно много, как в любительских, так и в промышленных условиях. Как и все остальное эти конструкции имеют свои положительные и отрицательные свойства. Некоторыми из отрицательных свойств являются такие, как потребность во внешнем источнике постоянного напряжения (+12 В), или сложность схемы.

К недостаткам подобных устройств следует также отнести применение реле, контакты которого со временем просто обгорают. В магазинах электротоваров сейчас продается немало простых и дешевых сумеречных выключателей, но качество их работы зачастую неудовлетворительно. Такие сложности часто отталкивают потребителя от использования таких выключателей.

Функциональная схема сумеречных выключателей достаточно проста. Условно ее можно разделить на три компонента: фотоэлемент (фоторезистор, фототранзистор, фотодиод), пороговое устройство (компаратор), выходное устройство (реле или симистор). При дневном освещении сопротивление фоторезистора невелико, поэтому напряжение на нем не превышает порога срабатывания компаратора. И поэтому нагрузка (освещение) отключена.

С уменьшением освещенности сопротивление фоторезистора увеличивается и напряжение на нем возрастает. В определенный момент уровень напряжения на фоторезисторе достигает порога срабатывания компаратора, который с помощью реле включает освещение.

Казалось бы, алгоритм работы достаточно простой, и реализовать его несложно. Но, тем не менее, некоторые схемы достаточно сложны, и если выполнены на транзисторах без применения микросхем, могут содержать десяток – другой деталей.

Вместе с тем современная элементная база электроники позволяет создавать очень простые и функциональные схемы. Достигается это интеграцией (встраиванием) одних элементов в другие. Примером такой интеграции может служить одна из разработок фирмы Teccor Electronics.

Это симистор, или на иностранный манер триак, со встроенным (интегрированным) симметричным динистором, выполняющим роль порогового устройства. Такое устройство получило название Quadrac. Его внутренняя схема показана на рисунке 1.

Нетрудно видеть, что это обычный симистор, вот только в цепь управляющего электрода последовательно включен симметричный динистор. По справочным данным (DataSheet) пороговое напряжение интегрированного динистора находится в пределах 33…43 В.

Рисунок 1. Симистор типа Quadrac. Схема принципиальная.

Симисторы типа Quadrac выпускаются в стандартном корпусе TO-220 с изолированным кристаллом, как показано на рисунке 2. По конструкции и внешнему виду они не отличаются от обычных симисторов. Даже расположение выводов то же.

Рисунок 2. Симистор типа Quadrac. Внешний вид и расположение выводов.

В зависимости от конкретной модели Quadrac различаются по максимальным токам и напряжениям: токи находятся в пределах 4…15 А, а допустимые напряжения 200…600 В. Для применения в высокоиндуктивных цепях предназначаются специализированные Quadrac. Эти модели имеют в конце обозначения букву H, например Q6006LTH.

Вообще, разобраться в маркировке именно этих симисторов достаточно просто. Разберемся с ней на примере только что упомянутого Q6006LTH.

Первая буква Q, как нетрудно догадаться, заимствована от Quadrac и означает, что это не что иное, как симистор со встроенным динистором.

Следующие за первой буквой две цифры, в данном случае это 60, означают, что рабочее напряжение данного прибора 600 В.

Две последних цифры 06, говорят о том, что максимальный рабочий ток составляет 6 А.

Буква H в конце обозначения это информация о том, что данный тип прибора можно использовать для управления индуктивной нагрузкой, например катушкой магнитного пускателя.

При использовании в подобном случае обычного симистора (без буквы H в конце обозначения) выводы 1 и 2 квадрака Q1 (смотри схему на рисунке 3) приходится шунтировать RC цепочкой состоящей из последовательно соединенных резистора 100 Ом и конденсатора 0,1 МкФ. При этом мощность резистора должна быть не менее двух ватт, а рабочее напряжение конденсатора не ниже 600 В. Конденсатор как всегда в таких случаях пленочный типа К-73-17. Если этих мер не предпринять, то катушка пускателя удерживаться как следует не будет: получится звонок громкого боя.

Q4015LTH. Такой Quadrac судя по обозначению имеет рабочее напряжение 400 В, максимальный ток 15 А, и предназначен для работы с высокоиндуктивной нагрузкой.

Назначение обычного симистора это переключение переменного тока при помощи импульсов напряжения на управляющем электроде. При его использовании в сумеречном выключателе обязательно потребуется пороговое устройство, как было описано выше.

Читайте так же:
Стандартные номиналы автоматических выключателей для одного выключателя

Симистор типа Quadrac пороговое устройство содержит внутри себя. Это интегрированный динистор с порогом срабатывания около 40 В. Для того, чтобы создать на таком симисторе сумеречный выключатель достаточно всего двух деталей. На схеме это резистор R1 и фотоэлемент (фоторезистор) PHOTOCELL. Такая схема показана на рисунке 3.

Рисунок 3. Простой сумеречный выключатель.

Когда фотоэлемент засвечен его сопротивление невелико (не более нескольких кОм), напряжение на управляющем электроде квадрака незначительное, отчего он находится в закрытом состоянии. При этом лампочка, естественно, не горит.

При снижении освещенности сопротивление фоторезистора увеличивается, поэтому на управляющем электроде появятся импульсы напряжения, амплитуда которых с наступлением темноты возрастает. Когда амплитуда импульсов достигнет 40 В симистор откроется, лампа зажжется.

В описываемом устройстве применен квадрак (такое наименование вполне применимо, даже «Яндекс» находит по нему то, что нужно) с рабочим напряжением 600В и током 4 А. при таких параметрах можно включать нагрузку мощностью 400…500 Вт, и при этом даже не требуется установка симистора на радиатор. Если же установить его на радиатор площадью около 100 квадратных сантиметров, то мощность нагрузки можно увеличить до 750 Ватт.

Если планируется подключение нагрузки с большей мощностью, то следует применить Quadrac на рабочие токи 6, 8, 10 или 15 А.

Настройка устройства сводится к подбору сопротивления резистора R1, именно от этой величины зависит, при какой освещенности будет срабатывать устройство. Величина сопротивления резистора R1 также зависит от примененного фотоэлемента, поэтому, указанное на схеме значение, следует принимать за ориентировочное. Тип фоторезистора на схеме не указан. Можно применить любой, например СФ3-1, ФСК-7 или ФСК-Г1.

Налаживание устройства можно выполнить при освещении фотоэлемента обычной лампой накаливания, подключенной через регулятор мощности.

Схема подключения датчика освещенности

Для автоматического управления наружным (а иногда и внутренним) освещением удобно использовать фотореле. При снижении уровня естественного света вечером оно включит систему искусственного освещения и отключит утром, когда взойдет солнце. Если совместить фотореле с датчиком движения, можно получить еще большую экономию – свет включится только ночью и только при условии присутствия человека. В продаже имеется много подобных совмещенных моделей. Выбрать и подключить датчик день-ночь можно самостоятельно.

Что такое фотореле, устройство и принцип действия

Если рассмотреть фотореле в качестве «черного ящика», то его устройство и принцип действия просты:

  • на стороне входа чувствительный элемент, куда попадает свет;
  • на выходе – сигнальное устройство;
  • на корпусе – настроечный орган.

При попадании света (или прекращении попадания) на чувствительный сенсор устройство выдает сигнал, который можно использовать для управления исполнительными механизмами, фонарями (напрямую или через реле-повторитель).

Схема подключения датчика освещенности

Можно выдавать сигнал на пульт управления или инициировать работу тревожной сигнализации. Сигнал может быть в виде:

  • изменения уровня напряжения (логического уровня);
  • «сухого контакта» реле;
  • изменения состояния электронного ключа (транзистор с открытым коллектором) и т.д.

Детектор освещенности может быть встроенным в корпус прибора, а может быть выносным. Тогда его можно установить в любом удобном месте. Орган настройки позволяет регулировать уровень срабатывания — можно заставить реле включать свет раньше или позже.

На самом деле устройство фотореле более сложно.

Блок-схема фотореле.

В общем случае прибор содержит:

  • элемент, чувствительный к свету (фоторезистор, фотодиод и т.п.);
  • устройство преобразования (преобразует изменение состояния сенсора в изменение электрического напряжения);
  • усилитель-буфер;
  • пороговое устройство – сравнивает напряжение от датчика с заданным уровнем;
  • таймер – ограничивает время работы освещения;
  • формирователь выходного сигнала.

Устройства разных производителей имеют разную схемотехнику. Некоторые элементы могут быть совмещены, некоторые могут отсутствовать. Некоторые приборы имеют фиксированный уровень срабатывания, у них нет органа регулировки.

Важно! Фотореле часто называют датчиком света, датчиком освещенности, датчиком день-ночь и т.д. Такие названия не совсем корректны. Датчиком освещения, строго говоря, является часть фотореле, преобразующая уровень освещенности в электрический сигнал или в величину, которую можно преобразовать в электрический сигнал.

Важные технические параметры и разновидности

Перед выбором фотореле должна быть полная ясность, где оно будет устанавливаться и какой нагрузкой управлять. Исходя из этого, при покупке надо обратить внимание на следующие технические характеристики.

  1. Напряжение питания. Может быть переменным 220 вольт или низким постоянным (12, 24 вольта и т.д.). Выбирается из удобства подключения на месте установки.
  2. Конструкция сенсора. Детектор света бывает выносной или встроенный. Выносной может монтироваться в нескольких десятках метров от основного блока.
  3. Степень защиты. Определяет место монтажа. Если, например, прибор имеет степень защиты IP20, то это подразумевает установку только в помещении (в распредщите) и выносной сенсор.
  4. Нагрузочная способность. Определяет электрическую мощность, которую может напрямую коммутировать фотореле.
  5. Диапазон изменения порога включения. Указывается в люксах. Особо полезной информации не несет, потому что трудно на глаз определить, какой уровень включения нужен на месте. Чем шире диапазон, тем лучше.
  6. Задержка на включение или выключение. От нуля до нескольких десятков секунд хватит на все случаи жизни.
  7. Также среди параметров указывается собственное потребление устройства. Оно невелико, в большинстве случаев не превышает 5-6 ватт. Поэтому гнаться за этим параметром нет смысла.
Читайте так же:
Схема соединения выключателя дрели

Исходя из этих характеристик можно подобрать реле, оптимальное по сочетанию технических и ценовых параметров.

Схема подключения фотореле

Схема подключения датчика света несложна. Фактически это выключатель освещения, и подсоединять его надо по тому же принципу. Но у фотореле есть особенности, которые при монтаже могут поставить определенные задачи.

Подключение в сети TN-C и TN-S

В настоящее время в России эксплуатируются сети 220 вольт, в которых защитный (PE) и нулевой (N) проводники могут быть объединены (TN-C) или разделены (TN-S). Система TN-S считается более прогрессивной и правильной, но полный переход на нее произойдет еще не скоро.

Фотореле в двухпроводной сети TN-C

Схема подключения датчика освещенности

Отличие от обычного выключателя освещения в том, что к фотореле надо подключить нулевой провод. Это необходимо для организации питания внутренней схемы управления сумеречного датчика. Если напряжение питания датчика отличается от 220 вольт, то с нулевым проводом его соединять не нужно, но потребуется внешний источник нужного напряжения.

Фотореле в трехпроводной сети TN-S

В сети TN-S существует дополнительный провод PE. Конструктив практически всех фотореле не предусматривает подключение этого проводника, поэтому схема не изменится.

Схема подключения датчика освещенности

Подключение датчика света через реле-повторитель

В некоторых случаях нагрузочной способности собственной контактной группы светового датчика может не хватить для коммутации имеющейся нагрузки. В такой ситуации выход прибора надо умощнить с помощью промежуточного реле, функции которого может исполнить магнитный пускатель. Его контакты должны быть рассчитаны на полный ток осветительного устройства. Выход фотореле надо соединить с обмоткой пускателя. А коммутацию питания лампочки будут выполнять контакты реле-повторителя.

Схема подключения датчика освещенности

Схема инвертирования выходного сигнала

Встречаются ситуации, когда управление осветительным устройством надо осуществлять по инверсному принципу — включать при появлении естественного освещения и отключать при заходе солнца. Такое фотореле-повторитель может понадобиться, например, при работе в системе освещения помещений, не имеющих окон (для содержания скота и т.п.). Реализовать его несложно, схема подключения датчика освещенности почти не отличается от предыдущей. Только нужен пускатель с перекидной контактной группой.

Схема подключения датчика освещенности

При отсутствии сигнала от датчика света лампа запитана через нормально замкнутые (нормально закрытые, NC) контакты повторителя. Если реле сработает под действием светового потока, пускатель подаст питание на лампочку. При наступлении темноты освещение отключится.

Схема с дополнительным выключателем

Стандартную схему можно снабдить дополнительным выключателем. Тогда освещение можно будет включать или выключать независимо от состояния фотореле – в зависимости от выбранного варианта. Это может быть необходимым при неисправности фотореле.

Схема подключения датчика освещенности

Схема подключения датчика освещенности

Если в этом варианте используется реле-повторитель, то дополнительный выключатель надо поставить параллельно его контактам. Еще лучше дополнить схему трехпозиционным выключателем. Он поможет выбирать режим работы освещения – ручной или автоматический. Полная схема включения будет выглядеть так.

Датчик освещенности. Где применяется и как устроен

У меня на блоге уже много статей про датчик движения, давно планировал опубликовать информацию по датчику освещенности.

Если Вам вообще интересно то, о чем и как я пишу, подписывайтесь на получение новых статей и вступайте в группу в ВК!

Его ещё называют датчиком освещения, светоконтролирующим выключателем, фотореле, фотодатчиком или сумеречным выключателем.

Я в статье буду называть и так, и этак — выбирайте, кому что больше нравится.

В статье рассмотрю общие вопросы — устройство, применение, параметры, а также приведу фото реальных датчиков освещенности, их внутренности, принципиальные электрические схемы. В общем, читайте, если что упустил — дополняйте и спрашивайте в комментариях.

Почему я датчик движения ставлю в один ряд с датчиком освещенности?

У них много схожего:

  • применяются для экономии энергии,
  • устройство домашней автоматики,
  • одинаковая схема подключения,
  • у каждого три вывода: фаза, ноль, выход, включают в качестве нагрузки (как правило) лампу освещения

Вечером иногда, проходя мимо, можно не отличить работу одного от другого.

Как работает датчик освещенности

Принцип работы прост, проще чем у датчика движения. В датчике освещения имеется светочувствительный элемент. Как правило, это фоторезистор или фотодиод. Эти элементы имеют свойство изменять своё сопротивление в зависимости от уровня освещения.

Читайте так же:
Схема управления выключателями с трех мест

Далее через схему регулировки (калибровки) сигнал со светочувствительного элемента попадает на вход ключевого элемента (транзистора). Ключевой транзистор имеет в своей нагрузочной цепи реле, которое своими контактами коммутирует «нагрузку пользователя» — лампу, уличный прожектор, и т.п. Подробнее принцип работы будет рассмотрен в этой статье в описаниях принципиальных схем датчиков освещения.

Можно сказать, что датчик освещенности и движения с точки зрения нагрузки работают точно так же, как и обычный, «человеческий» выключатель. Только тут этот выключатель автоматический.

Подключение датчика освещения

Как я уже говорил выше, схема подключения датчика освещенности полностью совпадает со схемой подключения датчика движения. Отличается только «начинка» датчиков.

Схема подключения датчика движения и датчика освещения

Схема взята из статьи про датчик движения, ссылка выше.

Итак, с подключением разобрались, теперь

Монтаж датчика освещения

Казалось бы, чего тут премудрого? Прикрутил, подключил, настроил, и всё! Но бывает, место установки выбрано неудачно, и начинаются проблемы.

У нас на улице одно время уличные светильники вечером включались замысловато. Включатся, потухнут, опять включатся, и так с периодом около 1 минуты. Потом, с наступлением хорошей темноты, включались окончательно.

Почему так? Просто датчик освещения ошибочно был установлен в зону освещения включаемого фонаря. Получается: стало темно — датчик сработал — фонарь загорелся — стало светло — датчик выключился — стало темно… И так далее, замкнутый круг.

Настройка и калибровка

При настройке датчика освещенности важно использовать черный пакетик, который идёт в комплекте с датчиком. Этот пакетик служит для имитации ночи.

(adsbygoogle = window.adsbygoogle || []).push(<>);

Кулечек для настройки датчика освещения

Из органов настройки в датчике освещенности — только регулятор уровня освещения (LUX). Он устанавливает уровень, про котором срабатывает внутреннее реле датчика.

Подробнее настройка уровня описывается в описании принципиальной схемы, ниже.

Есть простейшие датчики освещения (например, LXP-01), в котором вообще нет никаких регулировок. Есть продвинутые, где ещё есть регулятор времени задержки включения/выключения.

Устройство, внешний вид

Ниже на фото приведен внешний вид датчиков освещения LXP-02, LXP-03, описание по ходу.

Датчик освещения LXP-02 — самый популярный. Внешний вид сбоку

Тот же датчик, фото со стороны выводов:

Датчик освещения LXP-02. 2 внешний вид внизу

Описание выходов датчика:

  • Коричневый (может быть черным) провод — фаза (питание датчика)
  • Синий (зеленый) — ноль
  • Красный — подключение нагрузки (выходная фаза)

Снимаем белый колпак, видим печатную плату, на которой собрана схема датчика:

Датчик освещения LXP-02. 4 схема на печатной плате

В датчике используется реле DE3F-N-A на 24 VDC , с током контактов 10А. Этот ток определяет максимальную мощность нагрузки, которую может коммутировать этот датчик: 10х220 = 2,2кВт. Как и написано в инструкции к датчику. Но я бы не рискнул подключать такую нагрузку к этому датчику. По моему мнению, максимум, на что способно это реле — 1 кВт (4 Ампера). Всё, что мощнее, нужно подключать через промежуточный пускатель достаточной мощности.

Другой ракурс, фото платы:

Датчик освещения LXP-02. 5 схема на печатной плате

LXP-02. 6 схема на печатной плате, вид со стороны пайки

Видите дорожки, на которые нанесен слой припоя? Именно они чаще всего горят из-за перегруза, КЗ, неправильного подключения в системе освещения. Вместе с ремонтом этих дорожек, как правило, приходится менять и реле.

Теперь переходим к фотографиям датчика освещения LXP-03.

Датчик освещения LXP-03. 1

Согласно инструкции, этот датчик способен коммутировать токи 25А (220-240VAC). Смотрим на реле на плате. Ток реле 30А. То есть, производитель перестраховался. Я перестраховываюсь ещё больше, как и в случае с LXP-02. И ограничиваю ток через датчик на уровне 16А. В большинстве случаев для включения освещения хватает с головой.

Датчик освещения LXP-03. 2. другой ракурс

Ну, а теперь самое интересное —

Схемы датчиков освещения

Схема срисована именно с той платы, которая показана в начале статьи. Стоит отметить, что производитель постоянно работает над улучшением своего устройства (цена/качество), поэтому схема может меняться.

Датчик освещения LXP-02. Схема электрическая

Но принцип остается тот же:

Напряжение питания 220 Вольт поступает через клеммы L (фаза) и N (ноль).

Фазу и ноль можно «перепутать», как в принципе можно (но не рекомендуется) выключать ноль, а не фазу в обычных выключателях. Страдает только безопасность и здравый смысл.

Напряжение выпрямляется диодным мостом (4 диода типа 1N4007), фильтруется (сглаживается) электролитическим конденсатором, и стабилизируется на уровне +22…24 Вольта стабилитроном типа 1N4748.

Читайте так же:
Размеры автоматического выключателя 1250а

Далее постоянное напряжение питает остальную схему, которая работает так. На выходе резистивного делителя 68к — VR — Фоторезистор формируется напряжение, обратно пропорциональное освещённости. Подстроечный резистор VR с сопротивлением 1 МОм — это та самая «крутилка», с помощью которой устанавливается желаемый уровень срабатывания.

Не факт, что в таких схемах ставят фоторезистор, может стоять и фотодиод, но принцип тот же.

Хотите экономить электроэнергию — ставьте максимальное сопротивление, крутите его по часовой (LUX-), и он будет срабатывать тогда, когда будет уже совсем темно.

А хотите, чтобы освещение на улице включалось от малейшей тучки — крутите регулятор в другую сторону (LUX+).

При наступлении темноты освещенность падает, сопротивление фоторезистора растёт, напряжение на базе транзистора растёт. И достигает такого уровня, что транзистор открывается, через коллектор протекает ток, достаточный для включения реле КА. Реле своими контактами включает нагрузку, которая подключается через вывод LOAD.

При этом загорается светодиод, а конденсатор 47 мкФ в цепи базы сглаживает все процессы, чтобы реле слишком быстро не щёлкало, например, если его перекрывает ветка дерева, колеблющаяся от ветра.

В заключение — схема более мощной модели, LXP-03:

Датчик освещения LXP-03. Схема электрическая

Тут схема та же, отличия перечислю:

  • Схема питания ограничивает напряжение в фазной цепи.
  • Диодный мост с фильтром — такой же как и в предыдущей схеме, я неудачно ее изобразил.
  • вместо одного стабилитрона — два последовательно, но напряжение питания схемы — то же, +24В.
  • Используется составная схема на двух комплиментарных транзисторах, поскольку реле более мощное, ток его катушки больше.

Зная принцип работы схемы, её легко отремонтировать. А если хотите подробнее разобраться в ремонте, то в статье про ремонт датчика движения пошагово расписана методика и философия ремонта подобных устройств.

Сумеречные выключатели освещения с гальванической развязкой (220В)

Сумеречные выключатели освещения с гальванической развязкой (220В)

Принципиальные схемы сумеречных выключателей для управление ночным освещением. В простейшем случае это фотореле, включающее уличный или садовый фонарь снаступлением темноты, чуть сложнее -устройство с таймером, ограничивающим продолжительность ночного освещения (чтобы свет не горел всю ночь, а только вечером). Сейчас в продаже есть много таких устройств, особенно первого типа. Но, на мой взгляд, практически всем им свойственен существенный недостаток -наличие гальванической связи с электросетью, а это может привести к поражению электрическим током.

Первая схема

На рисунке 1 показана схема простого сумеречного выключателя, включающего уличный или садовый фонарь с наступлением темноты, и выключающий его на рассвете.

Светочувствительным элементом здесь является фотодиод FD1 типа ФД263, включенный по схеме фоторезистора, это когда он включен в обратном направлении по току, и его обратное сопротивление находится в обратной зависимости от уровня естественного света. Вместе с резистором R1 он образует делитель напряжения.

Принципиальная схема сумеречного выключателя освещения на микросхеме К561ЛЕ5

Рис.1. Принципиальная схема сумеречного выключателя освещения на микросхеме К561ЛЕ5.

Работает прибор следующим образом. Ночью, при низкой естественной освещен ности сопротивление фотодиода ED1, включенного как фоторезистор, высоко. Поэтому на соединенных вместе входах элемента D1.1 микросхемы D1 имеется напряжение, соответствующее логическому нулю.

Триггер Шмитта 01.1-01.2 находится в нулевом положении, и на выходе элемента D1.3 логическая единица, которая через резистор R3 поступает на транзисторный ключ VT1, в коллекторной цепи которого включено оптореле К1. Транзистор VT1 открывается и появляется ток через светодиод оптореле К1, которое открывается и включает лампу освещения, подключенную к розетке Х2.

Днем освещенность выше, поэтому сопротивление фотодиода FD1 низко. На соединенные вместе входы элемента поступает напряжение, соответствующее логической единице. На выходе элемента D1.3 будет ноль, который через резистор R3 поступает на транзисторный ключ VT1, в коллекторной цепи которого включено оптореле К1.

Транзистор VT1 закрывается и прекращается ток через светодиод оптореле К1, которое закрывается и выключает лампу освещения, подключенную к розетке Х2.

Так происходит каждые сутки. Конденсатор С1 немного затормаживает работу делителя напряжения на FD1 и R1, чтобы исключить переключения от резких изменений освещенности, например, фар проезжающего автомобиля, или от наводок, которые могут иметь место в определенных случаях. Световой порог «дня / ночи» регулируется, переменным резистором R1.

А от сопротивления R2 зависит гистерезис этого порога.

Гальванически низковольтная схема полностью развязана от электросети. Управление нагрузками осуществляется посредством оптической связи (через оптореле), а питание поступает через трансформатор Т1. Поэтому в случае попадания на органы управления воды или прикосновения к ним поражение током исключается, так как они не находятся под потенциалом электросети.

Читайте так же:
Установка одноклавишного выключателя от розетки

Пространственно фотодиод FD1 должен располагаться так, чтобы на него не попадал прямой свет от уличного или садового светильника, которым он управляет.

NK005
Выключатель освещения с датчиком света

Набор для сборки

С помощью этого устройства можно автоматизировать включение-выключение ночного освещения в прихожей многокомнатной квартиры, в подъезде жилого дома, уличного освещения, на дачном участке. Прибор позволяет регулировать порог включения-выключения, имеет небольшие размеры, обладает высокой надёжностью, прост в изготовлении, не даёт помех по электросети.

о поступлении на склад

Этот товар доступен под заказ партией от 100 шт. по предоплате со сроком поставки 5 — 6 недель

С помощью этого устройства можно автоматизировать включение-выключение ночного освещения в прихожей многокомнатной квартиры, в подъезде жилого дома, уличного освещения, на дачном участке. Прибор позволяет регулировать порог включения-выключения, имеет небольшие размеры, обладает высокой надёжностью, прост в изготовлении, не даёт помех по электросети.

Технические характеристики

Напряжение питания (В)220
Мощность подключаемой нагрузки, максимальная (Вт)1300
Длина (мм)61
Ширина (мм)36
Вес60

Инструкции

Принцип работы

Сумеречный переключатель состоит из фотоприёмника, триггера Шмитта, транзисторного ключа, электромагнитного реле и источника питания.Триггер Шмитта выполнен на операционном усилителе DA1 КР544УД1Б, охваченном положительной обратной связью через резистор R6. Hеинвертирующий вход DA1 через резистор R5 подключён к движку переменного резистора R2, который служит для регулировки порога переключения. Выходное напряжение триггера Шмитта через резистор R7 управляет работой электронного ключа, выполненного на транзисторе VT1 КТ3102АМ. В цепь коллектора VT1, через параллельно соединённые резистор R9 и конденсатор C2, включена обмотка электромагнитного реле K1, контактная группа K1.1 которого замыкает цепь питания нагрузки, подключённой через разъёмXS2.При замыкании электронного ключа VT1, конденсатор C2, заряжаясь через обмотку реле K1, создаёт импульс тока, достаточный для притяжения якоря этого реле.После заряда конденсатора якорь реле удерживается меньшим током, протекающим через резистор R9, что делает устройство экономичнее. Источник питания состоит из резистора R10, стабилитрона VD2, конденсатора C3 и диодного моста VD3. Надиодный мост через гасящий резистор R11 и конденсатор C4, соединёнными параллельно, поступает сетевое напряжение 220 В (разъём XS2).

Модели заводского изготовления широко используются в устройствах автоматики, например, для управления уличным освещением. Часто можно видеть днем горящие фонари, которые забыли выключить. При наличии фотодатчиков нет необходимости в ручном управлении освещением.

схема фотореле фр

Схема фотореле фр-2 промышленного изготовления применяется для автоматического управления уличным освещением. Здесь также коммутационным устройством является реле К1. К базе транзистора VT1 подключены фоторезистор ФСК-Г1 с резисторами R4 и R5.

Питание производится от однофазной сети 220 В. Когда освещенность мала, сопротивление ФСК-Г1 имеет большую величину и сигнала на базе VT1 недостаточно для его открывания. Соответственно закрыт и транзистор VT2. Реле K1 включено, и его рабочие контакты замкнуты, поддерживая лампы освещения горящими.

Когда освещенность увеличивается до порога срабатывания, снижается сопротивление фоторезистора и открывается транзисторный ключ, после чего реле K1 отключается, размыкая цепь питания ламп.

Фотореле принцип работы

Работа фотодатчика, контролирующего уровень уличной освещенности, лежит в основе принципа работы любого фотореле. Существует два типа таких фотодатчиков:

  1. — встроенные, когда датчик установлен вместе с реле непосредственно в самом электрощитке;
  2. — выносные, когда датчик расположен вне корпуса реле.

Корпус выносных фотореле должен быть обязательно прочным и иметь повышенный уровень герметичности и защищенности от воздействий окружающей среды.

регулятор освещенности фотореле

Это устройство имеет достаточно простой принцип действия и состоит оно из встроенного или выносного датчика. Учитывая интенсивность освещения, такой датчик передает информацию электронной плате или блоку, которые, в свою очередь, при достижении определенного порога срабатывания, срабатывают и включают освещение, замыкая электрическую цепь.

Следует отметить, что любое фотореле может быть запрограммировано в индивидуальном режиме. Это значит, что, если, к примеру, в летнее время года фотореле установлено в гараже, то диапазон его срабатывания будет отличаться от устройства, установленного на крыльце дома. Данный нюанс необходимо учитывать и, по возможности, выставлять наиболее подходящий к условиям размещения фотореле диапазон его чувствительности к свету.

Специфика подключения фотореле

При подключении фотореле следует знать некоторые особенности:

  • в тех случаях, когда требуется управление сразу несколькими лампами, потребуется дополнительный контроллер. Эта деталь будет от регулятора получать сигнал и влиять на уровень освещения;
  • для автоматического включения и выключения освещения электрических приборов в цепь питания встраивается фотореле. В светлое время фотореле отключается, в темное время включается;
    цепь питания встраивается фотореле
голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector