Alma38.ru

Электро Свет
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое резистор

Что такое резистор

Резистор (от латинского «resisto», что означает «сопротивляюсь») – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. В отличие от активных элементов, пассивные не имеют возможности управлять потоком электронов.

В народе резисторы называют «резюками» или просто «сопротивление». Резисторы отвечают за линейное преобразование силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.

Резистор является одним из самых популярных компонентов и используется в большинстве электронных устройств.

Содержание статьи

Для чего нужен резистор в электрической цепи

Для чего нужен резистор

Наглядный пример работы резистора

С помощью резистора в электроцепи ограничивают ток, получая нужную его величину. В соответствии с законом Ома, чем больше сопротивление при стабильном напряжении, тем меньше сила тока.

Закон Ома выражается формулой U = I*R, в которой:

  • U – напряжение, В;
  • I – сила тока, А;
  • R – сопротивление, Ом.

Также резисторы работают как:

  • преобразователи тока в напряжение и наоборот;
  • делители напряжения, это свойство применяется в измерительных аппаратах;
  • элементы для снижения или полного удаления радиопомех.

Основные характеристики резисторов

Параметры, которые нужно учитывать при выборе резистора, зависят от характера схемы, в которой он будет использован. К основным характеристикам относятся:

  • Номинальное сопротивление. Эта величина измеряется в Ом, 1 кОм (1000 Ом), 1 МОм (1000 кОм), 1 ГОм (1000 МОм).
  • Максимальная рассеиваемая мощность — предельная мощность, которую способен рассеивать элемент при долговременном использовании. На схемах номинальную мощность рассеивания указывают только для мощных резюков. Чем выше мощность, тем больше размеры детали.
  • Класс точности. Определяет, на сколько фактическая величина сопротивления может отличаться от заявленной.

При необходимости принимают во внимание предельное рабочее напряжение, избыточный шум, устойчивость к температуре и влаге, коэффициент напряжения. Если деталь планируется установить в аппарат, работающий на высоких и сверхвысоких частотах, учитывают паразитную емкость и паразитную индуктивность. Эти величины должны быть минимальными.

Способ монтажа

По технологии монтажа резисторы разделяют на выводные и SMD.

Выводные резисторы

Радиальный выводной резистор фото

Радиальный выводной резистор

Аксиальный выводной резистор фото

Аксиальный выводной резистор

Предназначены для монтажа сквозь печатную плату. Выводы могут располагаться аксиально и радиально. Такие детали использовались в старой аудио- и видеоаппаратуре. Сейчас они применяются в простых аппаратах и в тех случаях, когда использование SMD-резисторов по каким-либо причинам невозможно.

Выводные резисторы по конструкции бывают проволочными, металлопленочными и композитными.

Из чего состоит резистор проволочного типа

В проволочных резисторах резистивным компонентом является проволока, намотанная на сердечник. Бифилярная намотка (двумя параллельными проводами, изолированными друг от друга, или обычным двужильным проводом) снижает паразитную индуктивность. К концам обмотки присоединяют выводы из многожильной меди или латунных пластин. Для защиты от влаги, механических повреждений и загрязнений, проволочные резюки покрывают неорганической эмалью, устойчивой к повышенным температурам.

Чем отличается металлопленочный резистор от проволочного

У металлопленочного резистора резистивным элементом является не проволока, а пленка из металлосплава. Резистивные компоненты (проволока или пленка) в резисторе изготавливаются из сплавов с высоким удельным сопротивлением: манганина, константана, нихрома, никелина.

SMD-резисторы

SMD-резисторы (или чип-резисторы) рассчитаны на поверхностный монтаж и выводов не имеют. Эти миниатюрные детали малой толщины изготавливаются прямоугольной или овальной формы. Имеют небольшие контакты, впаянные в поверхность. Их преимущества – экономия места на плате, упрощение и ускорение процесса сборки платы, возможность использования для автоматизированного монтажа.

SMD-резисторы изготавливают по пленочной технологии. Они могут быть тонко- и толстопленочными. Резистивную толстую или тонкую пленку наносят на изоляционную подложку. Подложка выполняет две функции: основания и теплоотводящего компонента.

Из чего делают чип-резисторы

Тонкопленочные элементы, к которым предъявляются особые требования по влагостойкости, изготавливаются из нихрома. При производстве толстопленочных моделей используются диоксид рутения, рутениты свинца и висмута.

Виды резисторов по характеру изменения сопротивления

Резисторы бывают постоянными и переменными. Постоянные имеют два вывода и стабильное сопротивление, отображенное в маркировке. В переменных (регулировочных и подстроечных) резисторах этот параметр меняется в допустимых пределах, в зависимости от рабочего режима.

В переменных резюках три вывода. На схеме указывается номинал между крайними выводами. Значение сопротивления между средним выводом и крайними регулируется путем перемещения скользящего контакта (бегунка) по резистивному слою. При этом сопротивление между средним и одним из крайних выводов возрастает, а между средним и другим крайним выводами – падает. При движении «бегунка» в другую сторону эффект обратный.

Что делают подстроечные резисторы

Они созданы для периодической подстройки, поэтому подвижная система рассчитана на небольшое количество циклов перемещения – до 1000.

Регулировочные резисторы рассчитаны на многократное использование – более 5 тысяч циклов.

Читайте так же:
Реверсивный пускатель схема подключения с концевыми выключателями

Типы резисторов по характеру вольтамперной характеристики

По ВАХ резисторы разделяются на линейные и нелинейные. Сопротивление линейных резюков не зависит от напряжения и тока, а сопротивление нелинейных элементов меняется, в зависимости от этих (или других) величин. Малогабаритные линейные детали типа МЛТ (металлизированные лакированные термостойкие) используются в аппаратуре связи – магнитофонах и радиоприемниках.

Примером нелинейных резисторов может служить обычная осветительная лампочка, чье сопротивление в выключенном состоянии намного меньше, чем в режиме освещения. В фоторезисторах сопротивление меняется под действием света, в терморезисторах – температуры, тензорезисторах – деформации резисторного слоя, магниторезисторах – магнитного поля.

Виды резисторов по назначению

Резисторы по назначению разделяются на два основных типа – общего назначения и специальные. В свою очередь, специальные сопротивления делятся следующим образом:

  • Высокочастотные. Для чего нужны такие резисторы в электроцепях: благодаря низким собственным емкостям и индуктивностям, высокочастотные резисторы могут применяться в схемах, в которых частота достигает сотни мегагерц, они выполняют в них функции балластных или оконечных нагрузок.
  • Высокоомные. Величина сопротивления находится в диапазоне от нескольких десятков МОм до ТОм, величина напряжения небольшая – до 400 В. Высокоомные элементы работают в ненагруженном состоянии, поэтому большая мощность им не нужна. Их мощность рассеивания не превышает 0,5 Вт. Высокоомные резисторы служат для ограничения тока в дозиметрах, приборах ночного видения и других приборах с малыми токами.
  • Прецизионные и сверхпрецизионные. Эти устройства имеют высокий класс точности: допустимое значение сопротивления составляет 1% от номинального и менее. Для сравнения: у обычных резисторов допустимый диапазон составляет 5% и более. Прецизионные устройства используются в основном в приборах измерения высокой точности.

Шумы резисторов и способы их уменьшения

Собственные шумы резистивных элементов состоят из тепловых и токовых шумов. Тепловые шумы, спровоцированные движением электронов в токопроводящем слое, усиливаются при повышении температуры нагрева детали и температуры окружающей среды. При протекании тока генерируются токовые шумы. Токовые шумы, значение которых существенно выше тепловых, в основном характерны для непроволочных резисторов.

Способы борьбы с шумами:

  • Применение в схеме типов резисторов, в которых шумы невелики, благодаря технологии изготовления.
  • Переменные резисторы шумят больше постоянных, поэтому в схеме стараются использовать элементы с переменным сопротивлением минимального номинала или не применять их вообще.
  • Использование резюков с бОльшей мощностью, чем требуется по технологии.
  • Принудительное охлаждение элемента путем установки поблизости вентилятора.

Обозначение резисторов на схеме

Обозначение по ГОСТ 2.728-74Описание
Обозначение резистора на схемеПостоянный резистор без указания номинальной мощности рассеивания
Обозначение резистора на схемеПостоянный резистор номинальной мощностью рассеивания 0,05 Вт
Обозначение резистора на схемеПостоянный резистор номинальной мощностью рассеивания 0,125 Вт
Обозначение резистора на схемеПостоянный резистор номинальной мощностью рассеивания 0,25 Вт
Обозначение резистора на схемеПостоянный резистор номинальной мощностью рассеивания 0,5 Вт
Обозначение резистора на схемеПостоянный резистор номинальной мощностью рассеивания 1 Вт
Обозначение резистора на схемеПостоянный резистор номинальной мощностью рассеивания 2 Вт
Обозначение резистора на схемеПостоянный резистор номинальной мощностью рассеивания 5 Вт

Обозначение переменных, подстроечных и нелинейных резисторов на схемах:

Условное обозначение резистора на схеме – прямоугольник размерами 4х10 мм. На схемах значение сопротивления постоянного резюка менее кОма проставляется рядом с его условным обозначением числом без единицы измерения. При номинале от одного кОм до 999 кОм рядом с числом ставят букву «К», от одного МОм – букву «М». Характеристики резисторов указывают на их поверхности, для чего применяют буквенно-цифровой код или группу цветных полосок.

Примеры буквенно-цифрового обозначения для сопротивления, выраженного целым числом:

  • 25 Ом – 25 R;
  • 25 кОм – 25 K;
  • 25 МОм – 25 M.

Если для выражения величины сопротивления используется десятичная дробь, то порядок расположения цифр и букв будет иным, например:

  • 0,25 Ом – R 25;
  • 0,25 кОм – K 25;
  • 0,25 МОм – M 25.

Если сопротивление выражается числом, отличным от нуля и с десятичной дробью, то буква в обозначении играет роль запятой, например:

  • 2,5 Ом – 2R5;
  • 2,5 кОм – 2K5;
  • 2,5 МОм – 2M5.

Производители в силу несовершенства производственной технологии не в состоянии на 100% гарантировать соответствие заявленного значения сопротивления фактическому. Допустимая погрешность обозначается в % и проставляется после номинального значения, например ±5%, ±10%, ±20%. Класс точности может определяться буквой, в зависимости от производителя, – русской или латинской.

Электронный переменный резистор

Электронный переменный резистор

В своих самодельных поделках радиолюбители практически всегда применяют переменные резисторы для регулировки громкости или напряжения ну и естественно, каких либо других параметров. Но прибор с кнопками на лицевой панели смотрится куда более интересно и современно, чем с обыкновенными ручками-крутилками. Применения микроконтроллерного управления не всегда целесообразно в простеньких поделках, а также тяжело для новичка, а вот повторить описанный ниже электронный переменный резистор сможет, наверное, каждый.

Электронный переменный резистор

Схема имеет настолько малые габариты, что ее можно впихнуть в практически любое самодельное устройство. Она полностью выполняет функцию обыкновенного переменного резистора, не содержит дефицитных и специфических компонентов.

Электронный переменный резистор

Основу ее составляет полевой транзистор КП 501 (или любой другой его аналог).

Нажимая кнопку SB1, мы накапливаем заряд на электролитическом конденсаторе С 1, что позволяет приоткрыть транзистор и повлиять на сопротивление на выходных клеммах схемы. Нажимая кнопку SB2, мы разряжаем конденсатор С 1, что приводит к постепенному закрыванию транзистора. При постоянном зажатии, какой либо из кнопок, изменения сопротивления производиться плавно.

Плавность регулировки такого электронного переменного резистора зависит от емкости конденсатора С 1 и номинала резистора R 1. Максимальное сопротивление, которое способна имитировать схема зависит от подстроечного резистора R 2. Схема начинает работать сразу и дополнительной настройки не требует, кроме как подстройки максимального сопротивления резистором R 2.

После отключения питания схемы, такой электронный переменный резистор не сбрасывает настройки сразу, а сопротивление схемы увеличивается постепенно, что связанно с саморазрядом конденсатора С 1. При использовании нового и качественного конденсатора С 1 настройки схемы могут продержаться около суток.

Наверное, самым востребованным применением этой схемы станет электронный регулятор громкости. Такая электронная регулировка громкости не лишена своих недостатков, но важнейшим фактором для радиолюбителей наверняка станет простота повторения.

Демонстрацию работы этой схемы смотрим ниже, ставим лайк, а также подписываемся на наши странички в соц. сетях!

Прим. В ролике электронный аналог переменного резистора настроен на 10 кОм. Используемый мультиметр Bside ADM01 имеет автоматическое переключение диапазонов и при их переключении не всегда слету определяет текущее сопротивление схемы.

Резисторы

Резистор (или сопротивление) — пассивный элемент электрической цепи. Он может обладать конкретным значением сопротивления или переменным. Резисторы используются практически во всех электронных и электрических устройствах. В электрических цепях резисторы используют в разных целях:

  • Для преобразования силы тока в напряжение
  • Для преобразования напряжения в силу тока
  • Для ограничения тока
  • Для поглощения эл. энергии

Их основные технические параметры — номинальное сопротивление (номинал) в Омах, максимальная рассеиваемая мощность, максимальное рабочее напряжение и класс точности. Есть и другие параметры, такие как температурный коэффициент, термостойкость, влагоустойчивость и другие. Так же имеются паразитные параметры — емкость и индуктивность. Эти параметры важно учитывать при разработке устройств, предназначенных для работы в сложных условиях или требующих высокой точности, но можно опустить при небольших самоделках на Arduino.

Обозначение резисторов

В мире есть несколько общепринятых условных графических обозначений резисторов на схемах. В США рисунок резистора похож на зигзаг, а в России и Европе он выглядит как прямоугольник.

Пример рисунка резисторов в России и Европе (а), и в США (б)

Пример рисунка резисторов в России и Европе (а), и в США (б)

В России существует ГОСТ 2.728-74, в соответствии с которым постоянные резисторы на схемах должны обозначаться так:

Обозначения постоянных резисторов по ГОСТ 2.728-74

Обозначения постоянных резисторов по ГОСТ 2.728-74

По тому же ГОСТу нелинейные, переменные и подстроечные резисторы должны обозначаться так:

Обозначение переменных резисторов по ГОСТ 2.728-74

Обозначение переменных резисторов по ГОСТ 2.728-74

Маркировка резисторов

Постоянные резисторы обычно имеют очень небольшие размеры. Есть и крупные резисторы, но они используются для более специфических задач, так как они способны выдерживать большие токи, напряжения и температуры.

Резистор большой мощности

Для удобства обозначения основных параметров мелких постоянных резисторов используется цветовая маркировка. На корпус резистора наносятся несколько цветных полос, цвета которых имеют свое значение. Для расшифровки используется либо таблица постоянных резисторов либо онлайн калькуляторы цветовой маркировки.

Цветовая маркировка резисторов

Виды резисторов

Классификаций резисторов очень много:

  • По области применения:
    • Высокоомные (обладающие сопротивление более 10 МОм)
    • Высокочастотные (с уменьшенной паразитарной индуктивностью и емкостью)
    • Высоковольтные (способные пропускать через себя тысячи вольт)
    • Прецизионные (повышенной точности с допуском менее 1%)
    • Переменные подстроечные
    • Постоянные
    • Переменные регулировочные
    • Обычные незащищенные
    • Покрытые лаком
    • Залитые компаундом
    • Впрессованные в пластмассу
    • Вакуумные
    • Для навесного монтажа
    • Для монтажа на печатных платах
    • Для микромодулей и микросхем
    • Линейные
    • Нелинейные (фоторезисторы, терморезисторы, варисторы и другие)
    • Проволочные
    • Непроволочные
    • Углеродистые
    • Металлопленочные
    • Интегральные
    • Проволочные

    Далее рассмотрим несколько видов резисторов такие как постоянные, переменные и некоторые нелинейные резисторы.

    Постоянный резистор

    Постоянный резистор — это тот резистор, характеристики которого предопределены и не изменяются. Иначе говоря это элемент электрической цепи с фиксированным сопротивлением, предельным напряжением, классом точности. Такие резисторы изображены на картинках выше.

    Расчет постоянного резистора для светодиода

    Постоянные резисторы мы использовали во многих проектах. Например в проекте с подключением светодиода к Ардуино. Выход ардуино имеет напряжение 5 вольт и способен подать ток гораздо выше допустимого для светодиода. Так же необходимо учитывать, что сопротивление светодиода и без того низкое, так еще и падает во время работы.

    Используя закон Ома мы можем увидеть, что сила тока будет расти при падении сопротивления и при одинаковом напряжении. Это значит что светодиод требующий 20 мА для работы, будет пропускать через себя более сильный ток и попросту сгорит. Тут то нам и поможет обычный постоянный резистор.

    Что бы вычислить необходимый номинал резистора нам необходимо знать характеристики источника питания и характеристики светодиода. Источником питания для нашего светодиода выступает плата Arduino Uno. А характеристики светодиода можно посмотреть в его техническом описании, или спросить у продавца. Обычно это ток 20 мА и падение напряжения 2 В.

    • Vps — напряжение источника питания (5 Вольт)
    • Vdf — падение напряжения на светодиоде (2 Вольта)
    • If — номинальный ток светодиода (20 миллиампер или 0.02 Ампера)

    Теперь подставим наши данные в формулу закона Ома для расчета сопротивления. Если кто забыл то напомню: R = U / I (сопротивление равно напряжению деленному на силу тока). Подставляем наши данные: R = (Vps — Vdf) / If = (5В — 2В) / 0.02А = 150 Ом

    Теперь мы просто берем резистор на 150 Ом и ставим его перед или после светодиода (без разницы).

    Подключение светодиода к Arduino

    Подключение светодиода к Arduino

    Переменный резистор

    Переменный резистор — это электротехническое устройство, используемое для регулирования параметров электрической цепи (напряжение, сила тока) за счет заданного изменения сопротивления.

    У переменного резистора есть множество названий и подвидов: реостат, потенциометр, переменное сопротивление, подстроечный резистор, регулировочный резистор. Попробуем разобраться в чем отличия. Переменное сопротивление, переменный резистор и реостат — это всё названия одного класса резисторов. «Потенциометр» — это жаргонное название переменного резистора, подключенного как делитель напряжения (о резисторных сборках и делителях напряжения мы расскажем в отдельной статье).

    • Регулировочный резистор — переменный резистор, предназначенный для многократной регулировки параметров электрической цепи.
    • Подстроечный резистор — это тоже переменный резистор, который используется для подстройки параметров электрической цепи, у которого число перемещений подвижной системы значительно меньше, чем у регулировочного резистора.

    Нелинейные резисторы

    Нелинейные резисторы — это резисторы сопротивление которых изменяется в зависимости от внешних факторов. Внешними факторами могут быть: температура, количество света, магнитное поле, напряжение в электрической цепи и другие. Вот некоторые примеры нелинейных резисторов, подробнее о которых вы сможете почитать по ссылкам в википедии:

      — сопротивление меняется в зависимости от температуры; — сопротивление меняется в зависимости от приложенного напряжения; — сопротивление меняется в зависимости от освещённости; — сопротивление меняется в зависимости от деформации резистора; — сопротивление меняется в зависимости от величины магнитного поля.

    Не путайте такие резисторы с датчиками, они не показывают реальные величины, воздействующих на них сил. Изменяется лишь сопротивление. Можно откалибровать данные и привязать значение сопротивления, например терморезистора, к определенной температуре, но это не лучший вариант.

    На сегодня это всё. В отдельной статье мы поговорим о соединении резисторов в разных комбинациях, таких как делители напряжения, подключение резисторов последовательно и параллельно.

    Что такое резистор и для чего он нужен?

    При передаче электрического тока на расстояние из-за сопротивления проводов теряется часть энергии. В таких случаях сопротивление является негативным фактором и его стараются свести к минимуму.

    Другое дело электрические цепи в электронных устройствах. Там резистор выполняет много полезных функций. В электронных схемах используется свойства этих пассивных компонентов для ограничения тока в многочисленных цепях. С их помощью обеспечивается нужный режим работы усилительных каскадов.

    Что такое резистор?

    Название этого электронного элемента произошло от латинского слова resisto — сопротивляюсь. То есть – это пассивный элемент применяемый в электрических цепях, действие которого основано на сопротивлении току. Основной характеристикой этого электронного компонента является величина его электрического сопротивления.

    Пассивность данного электронного компонента означает то, что основной его функцией является поглощение электрической энергии. В отличие от активных элементов электроники, он ничего не генерирует, а только пассивно рассеивает электричество, преобразуя его в тепло. В схемах замещения сопротивление является основным параметром, в то время как ёмкость и индуктивность – паразитные величины.

    Применение

    Резисторы применяются во всех электрических схемах для установления нужных значений тока в цепях, с целью демпфирования колебаний в различных фильтрах, в качестве делителей напряжений и т. п.

    Резисторы выполняют функции нагрузки в резистивных цепях, используются в качестве делителя напряжения (см. рисунок ниже) и тока, являются элементами фильтров, применяются для формирования импульсов, выполняют функции шунтов и многое другое. Сегодня трудно себе представить электрическую схему, в которой не задействованы несколько резистивных элементов.

    делитель напряжения на резисторах

    Рис. 1. Пример использования резисторов в схеме делителя напряжения

    Без резисторов не работает ни один электронный прибор.

    Устройство и принцип работы

    Конструкция постоянных резисторов довольно простая. Они состоят из керамической трубки, поверх которой намотана проволока или нанесена резистивная плёнка с определённым сопротивлением. На концы трубки вставлены металлические колпачки с припаянными выводами для поверхностного монтажа. Для защиты слоя используется лакокрасочное покрытие.

    Устройство таких элементов можно понять из рисунка 2 ниже.

    В большинстве моделей такая конструкция традиционно сохраняется, но сегодня существуют различные виды сопротивлений с использованием резистивного материала, устройство которых немного отличается от конструкции описанной выше.

    Строение резистора

    Рис. 2. Строение резистора

    Современную электронную аппаратуру наполняют платы, начинённые миниатюрными деталями. Поскольку тенденция к уменьшению размеров электронных приборов сохраняется, то требования к уменьшению габаритов коснулись и резисторов. Для этих целей идеально подходят непроволочные сопротивления. Они просты в изготовлении, а их номинальные мощности хорошо согласуются с параметрами маломощных цепей.

    Казалось бы, что эра проволочных резисторов постепенно уходит в прошлое. Однако это не так. Спрос на проволочные сопротивления остаётся в тех сферах, где транзисторы с металлоплёночным или с композитным резистивным слоем не справляются с мощностями электрических цепей.

    Для непроволочных резисторов используются следующие резистивные материалы:

    • нихром;
    • манганин;
    • константан;
    • никелин;
    • оксиды металлов;
    • металлодиэлектрики;
    • углерод и другие материалы.

    Перечисленные вещества обладают высокими показателями удельного сопротивления. Это позволяет изготавливать электронные компоненты с очень маленькими корпусами, сохраняя при этом значения номинальных величин.

    Размеры и формы корпусов, проволочных выводов современных резисторов соответствуют стандартам, разработанным для автоматической сборки печатных плат. С целью надёжного соединения выводов способом пайки, выводы деталей проходят процесс лужения.

    Конструкция регулировочных (рис. 3) и подстроечных резисторов (рис.4) немного сложнее. Эти переменные транзисторы состоят из кольцевой резистивной пластины, по которой скользит бегунок. Перемещаясь по кругу, подвижный контакт изменяет расстояние между точками на резистивном слое, что приводит к изменению сопротивления.

    Регулировочные резисторы Рис. 3. Регулировочные резисторы Подстроечные резисторы Рис. 4. Подстроечные резисторы

    Принцип действия.

    Работа резистора основана на действии закона Ома: I = U/R , где I – сила тока, U – напряжение, R – сопротивление на участке цепи. Из формулы видно как зависят от величины сопротивления параметры тока и напряжения.

    Подбирая резисторы соответствующего номинала, можно изменять на участках цепей величины тока и напряжения. Например, увеличивая сопротивление последовательно включённого резистора на участке цепи, можно пропорционально уменьшить силу тока.

    Условно резистор можно представить себе в виде узкого горлышка на участке трубки, по которой течёт некая жидкость (см. рис. 5). На выходе из горлышка давление будет ниже, чем на его входе. Примерно, то же самое происходит и с потоком заряженных частиц – чем больше сопротивление, тем слабее ток на выходе резистора.

    Принцип работы

    Рис. 5. Принцип работы

    Мы уже упомянули два типа резисторов, отличающиеся по конструкции: постоянные, у которых сопротивление статичное (допускается мизерное отклонение параметров при нагреве элемента) и переменные. К последним можно добавить подвид переменных сопротивлений (полупроводниковых резисторов) – нелинейные.

    Сопротивление нелинейных компонентов изменяется в широких пределах под воздействием различных факторов:

    • изменения температуры (терморезисторы);
    • яркости света (фоторезисторы);
    • изменений напряжения (варисторы);
    • деформации (тензорезисторы);
    • напряжённости электрического поля (магниторезисторы);
    • от протекающего заряда (мемристоры).

    За видом резистивного материала классификация может быть следующей:

    • проволочные резисторы (рис. 6);
    • композиционные;
    • металлоплёночные (рис. 7);
    • металлооксидные (характеризуются стабильностью параметров);
    • углеродные (угольный резистор);
    • полупроводниковые, с применением резистивных полупроводниковых материалов (могут быть как линейными, так и переменными).

    Отличие плёночных smd компонентов от композиционных деталей состоит в способах их изготовления. Композиционные детали производятся путём прессования композитных смесей, а плёночные – путём напыления на изоляционную подложку.

    В интегральных монокристаллических микросхемах методом трафаретной печати или способом напыления в вакууме создают встроенные интегральные резисторы.

    По назначению сопротивления подразделяются на детали общего назначения и на компоненты специального назначения:

    • прецизионные и сверхпрецизионные (высокоточные детали с допуском отклонений параметров от 0,001% до 1%);
    • высокоомные (от десятков МОм до нескольких Том);
    • высокочастотные, способные работать с частотами до сотен МГц;
    • высоковольтные, с рабочим напряжением, достигающим десятков кВ.

    Можно классифицировать детали и по другим признакам, например по типу защиты от влаги или по способу монтажа: печатный либо навесной.

    Номиналы резисторов

    Элементы имеют свой допуск в отклонениях номинальных сопротивлений. В соответствии с допусками номиналы резисторов разбиты на 3 ряда, которые обозначаются: Е6, Е12, и Е24.

    Компоненты ряда Е6 имеют допуск отклонения ± 20%; ряда Е12 – ± 10%, а ряда Е24 – ± 5%.

    Номиналы резисторов каждого ряда представлены в справочных таблицах, которые можно найти в интернете.

    Маркировка

    Раньше на корпусах сопротивлений проставляли номинал, ряд, мощность и серийный номер. В связи с миниатюризацией деталей перешли на цветовую маркировку. Параметры сопротивлений кодируют с помощью цветных колец (см. рис. 8).

    Цветовая маркировка

    Рис. 8. Цветовая маркировка

    Если на корпусе присутствует 3 кольца, то первые два обозначают величину сопротивления, третье – множитель, а допустимое отклонение составляет 20%.

    Если на корпусе 4 кольца, то значения первых трёх из них такие же, как в предыдущем примере, а четвёртое кольцо указывает на величину отклонения.

    Пять колец: первые 3 указывают величину сопротивления, на четвёртой позиции – множитель, а на пятой – допуск.

    На сверхточных деталях наносятся 6 цветовых полос: три первых указывают величину сопротивления, полоса на четвёртой позиции – множитель, а пятое кольцо — допустимое отклонение.

    Каждому цвету присвоена конкретная цифра (от 0 до 9). Учитывая позицию кольца и его цвет, можно с точностью определить параметры изделия. Для этого удобно пользоваться таблицей цветов (рис. 9).

    Таблица цветов

    Рис. 9. Таблица цветов

    В некоторых случаях вместо сопротивления используют обычные перемычки. Считается что у них нулевое сопротивление. Вместо перемычек иногда устанавливают резистор с нулевым сопротивлением (по сути та же перемычка, только адаптирована под размеры резистора). На корпус такого сопротивления наносят 1 чёрную полоску.

    Маркировка SMD-резисторов

    Сопротивления, предназначенные для поверхностного монтажа маркируют цифрами (см. рис. 10). Кодировка сложна для запоминания. В ней учитывается количество цифр и их позиции. Цифрами кодируют типоразмеры изделий и значения основных параметров. Для расшифровки кодов данного типа маркировки существуют справочные таблицы или калькуляторы.

    Цифровая маркировка

    Рис. 10. Цифровая маркировка

    Код на рисунке расшифровывается так: номинальное сопротивление 120×10 6 Ом (последняя цифра показывает количество нулей, то есть степень числа 10). Резистор из ряда Е96 с допуском 1%, типоразмер 0805 либо 1206 (значения, выделенные курсивом, определяются по справочнику).

    Обозначение на схемах

    Традиционно резисторы на схемах обозначают в виде прямоугольника (по ГОСТ 2.728-74) или ломаной линии (рис. 12 — в основном на схема западного образца). В прямоугольнике иногда указывают мощность, используя для этого условные обозначения в виде вертикальных, косых или горизонтальных чёрточек (см. рисунок ниже):

    • I = 1 Вт;
    • II = 2 Вт;
    • III = 3 Вт;
    • – = 0.5 Вт;
    • = 0.25 Вт;
    • \ = 0.125 Вт.

    Возле значка проставляют букву R и номинал резистора.

    Обозначение на схемах

    Рис. 12. Обозначение на схемах

    В отличие от постоянных деталей, обозначение переменных резисторов имеет особенность: над прямоугольником добавляется стрелка, указывающая, что в конструкции детали есть скользящий контакт (бегунок).

    Например, УГО потенциометра выгляди так:

    УГО потенциометра

    Типы резисторов и их обозначения

    Типы резисторов и их обозначения

    Характеристики и параметры

    Пределы границ сопротивлений для деталей общего назначения находятся в промежутке от 10 Ом до 10 МОм. Для таких компонентов номинальная мощность рассеивания составляет 0,125 – 100 Вт.

    Сопротивление высокоомных деталей составляет порядка 10 13 Ом. Такие изделия применяются в измерительных устройствах, предназначенных для малых токов. Величины номинальных мощностей на корпусах таких компонентов могут не указываться. Рабочее напряжение от 100 до 300 В.

    Класс высоковольтных деталей предназначен для работы под напряжением 10 – 35 кВ. Их сопротивление достигает 10 11 Ом.

    Для высокочастотных резисторов важен номинал рабочей частоты. Они способны работать на частотах свыше 10 МГц. Высокочастотные токи сильно нагревают детали. При интенсивном охлаждении номинальные мощности таких компонентов достигают величин 5, 20, 50 кВт.

    В точных измерительных и вычислительных устройствах, а также в релейных системах применяются прецизионные резисторы. Они обладают высокой стабильностью параметров. Мощность рассеивания у таких деталей не превышает 2 Вт, а номинальное сопротивление лежит в пределах 1 – 10 6 Ом.

    Кроме основных характеристик иногда важно знать уровень напряжений шума, зависимость сопротивления реальных резисторов от нагревания (температурный коэффициент сопротивления) и некоторые другие.

    Соединение резисторов

    Сопротивления можно соединять двумя способами – параллельно либо последовательно.

    • Для параллельного соединения 2 резисторов имеем: R = (R1* R2) / (R1+R2).
    • При последовательном соединении 2 резисторов – общее сопротивление определяем по формуле: R = R1 + R2.

    Для расчета последовательно и параллельно соединенных резисторов удобно воспользоваться нашими калькуляторами:

    голоса
    Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector