Alma38.ru

Электро Свет
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Практическая работа №8 Расчет токов короткого замыкания в электроустановках напряжением выше 1 кВ учебно-методический материал

Практическая работа №8 Расчет токов короткого замыкания в электроустановках напряжением выше 1 кВ
учебно-методический материал

Произвести расчёт тока короткого замыкания и мощность в точке К указанной схемы (см. ниже). Данные для расчёта указаны в таблице «Исходные данные» (см. ниже). Расчёт производится в соответствии с выданным вариантом.

Письменно ответить на вопрос согласно своему варианту:

  1. Что такое короткое замыкание?
  1. Какие виды КЗ вам известны?
  1. Перечислить причины КЗ?
  1. Перечислить последствия КЗ?
  1. Из каких составляющих рассматривается (теоретический) ток КЗ?
  1. Какие элементы учитываются при расчёте токов КЗ в цепях ВН?
  1. Какой ток называется ударным током?
  1. В чём заключается электродинамическое действие токов КЗ?
  1. В чём заключается термическое действие токов КЗ?

10. Какие допущения предполагаются при расчёте токов КЗ?

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЁТАМ

Коротким замыканием (КЗ) называется преднамеренное или случайное, не предусмотренное нормальными условиями работы соединение двух точек электрической цепи, находящихся под напряжением друг относительно друга, при котором токи в ветвях, примыкающих к месту замыкания, резко возрастают. КЗ является одним из основных видов аварий систем электроснабжения. Расчет токов КЗ в системе электроснабжения промышленных предприятий производится упрощенным способом с рядом допущений.

Расчет токов КЗ выполняем для:

  • определения максимально возможных токов КЗ для проверки токоведущих частей и электрических аппаратов на термическую и динамическую стойкость, а также для выбора мероприятий по ограничению токов КЗ.
  • определения минимально возможных токов КЗ для проверки чувствительности защиты, правильного выбора установок срабатывания релейной защиты и автоматики.

Определение сопротивления элементов системы

Расчет токов КЗ выполняем в следующем порядке: по расчетной схеме электроснабжения составляем схему замещения, в которой указываются сопротивления всех элементов и намечаются точки для расчета токов КЗ. Путем постепенного преобразования схему замещения приводят к наиболее простому виду так, чтобы каждый источник питания был связан с точкой КЗ одной эквивалентной линией, характеризуемой своим результирующим сопротивлением (X рез или Z рез ). Затем по закону Ома определяем токи КЗ.

Расчет токов КЗ в установках напряжением выше 1000 В выполняют как правило, в относительных единицах. Для расчета в относительных единицах все величины сравнивают с базисными, в качестве которых принимают базисную мощность (S б ) и базисное напряжение (U б ). За базисную мощность для удобства подсчетов принимаем 1000 МВА. За базисное напряжение принимают среднее номинальное напряжение той ступени, где производится расчет токов КЗ. Шкала

средних номинальных напряжений: 115; 37; 10,5; 6,3; 0,69; 0,4 кВ. Базисный ток базисное напряжение и базисная мощности связаны уравнением: .

Для генераторов, мощных трансформаторов, высоковольтных воздушных линий, реакторов при расчете токов КЗ принимаются во внимание только их индуктивные сопротивления, так как активные сопротивления во много раз меньше индуктивных. Активные сопротивления для кабельных линий и цеховых трансформаторов (мощностью менее 1600 кВА) учитываются в том случае если суммарное результирующее активное сопротивление до точки КЗ составляет более 0,3 от суммарного индуктивного, т.е. r рез ≥x рез /3. Сопротивления элементов системы электроснабжения в относительных единицах определяется по формулам (см. таблицу). Выполнив определение сопротивлений, переходим к построению схемы замещения. Добавляем в нее обозначения величин сопротивления точек КЗ. Для определения токов КЗ необходимо упростить схему замещения, для чего начинаем объединять элементы. Преобразования схемы замещения выполняется в направлении от источника к точке КЗ.

В схеме несколько источников, допускается их объединение при условии:

Выполнив преобразование схемы замещения и пределив результирующее сопротивление схемы замещения х рез отображаем ее и определяем токи короткого замыкания по формулам:

-ток короткого замыкания,

– ударный ток короткого замыкания,

мощность короткого замыкания.

Приложение к расчетной работе по теме

РАСЧЁТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ В ЭЛЕКТРОУСТАНОВКАХ НАПРЯЖЕНИЕМ ВЫШЕ 1 КВ Расчетные выражения для определения приведенных значений сопротивлений

Ток КЗ. От чего зависит величина тока короткого замыкания?

Ток КЗ

Здравствуйте, уважаемые читатели и гости сайта Power Coup Electric. В сегодняшней статье мы хотим рассказать вам про ток КЗ (короткого замыкания) в электрических сетях. Мы рассмотрим типичные примеры коротких замыканий, способы расчетов токов короткого замыкания, обратим внимание на связь индуктивного сопротивления и номинальной мощности трансформаторов при расчете токов короткого замыкания, а также приведем конкретные несложные формулы для этих вычислений.

Читайте так же:
Ток аварийного режима для кабеля

При проектировании электроустановок необходимо знать значения симметричных токов короткого замыкания для различных точек трехфазной цепи. Величины этих критических симметричных токов позволяют проводить расчеты параметров кабелей, распределительных устройств, устройств селективной защиты и т. п.

Далее рассмотрим ток КЗ для трехфазной цепи при нулевом сопротивлении, который подается через типичный распределительный понижающий трансформатор. В обычных условиях данный тип повреждений (короткое замыкание болтового соединения) оказывается наиболее опасным, при этом расчет очень прост. Простые расчеты позволяют, придерживаясь определенных правил, получить достаточно точные результаты, приемлемые для проектирования электроустановок.

Ток КЗ во вторичной обмотке одного понижающего распределительного трансформатора. В первом приближении сопротивление высоковольтной цепи принимается очень малым, и им можно пренебречь, поэтому:

Ток КЗ

Расчёт тока КЗ

Здесь P – номинальная мощность в вольт-амперах, U2 – напряжение между фазами вторичной обмотки на холостом ходу, Iн — номинальный ток в амперах, Iкз — ток КЗ в амперах, Uкз — напряжение при коротком замыкании в процентах.

В таблице ниже приведены типичные значения напряжений короткого замыкания для трехфазных трансформаторов на напряжение высоковольтной обмотки в 20 кВ.

Ток КЗ

Типичные значения напряжений короткого замыкания

Если для примера рассмотреть случай, когда несколько трансформаторов питают параллельно шину, то величину тока короткого замыкания в начале линии, присоединенной к шине, можно принять равной сумме токов короткого замыкания, которые предварительно вычисляются по отдельности для каждого из трансформаторов.

Когда все трансформаторы получают питание от одной и той же сети высокого напряжения, значения токов короткого замыкания при суммировании дадут несколько большее значение, чем окажется в реальности. Сопротивлением шин и выключателей пренебрегают.

Пусть трансформатор обладает номинальной мощностью 400 кВА, напряжение вторичной обмотки 420 В, тогда если принять Uкз = 4%, то:

Ток КЗ

Пример расчёта тока КЗ

На рисунке ниже приведено пояснение для данного примера.

Ток КЗ

Рисунок для расчета тока КЗ

Точности полученного значения будет достаточно для расчета электроустановки.

Ток короткого трехфазного замыкания в произвольной точке установки на стороне низкого напряжения:

Ток КЗ

Расчёт тока короткого трехфазного замыкания

Здесь: U2 — напряжение на холостом ходу между фазами на вторичных обмотках трансформатора. Zт — полное сопротивление цепи, расположенной выше точки повреждения. Далее рассмотрим, как найти Zт.

Каждая часть установки, будь то сеть, силовой кабель, непосредственно трансформатор, автоматический выключатель или шина, — имеют свое полное сопротивление Z, состоящее их активного R и реактивного X.

Емкостное сопротивление здесь роли не играет. Z, R и X выражаются в омах, и при расчетах представляются как стороны прямоугольного треугольника, что показано на рисунке ниже. По правилу прямоугольного треугольника вычисляется полное сопротивление.

Ток КЗ

Треугольник сопротивления

Сеть разделяют на отдельные участки для нахождения X и R для каждого из них, чтобы вычисление было удобным. Для последовательной цепи значения сопротивлений просто складываются, и получаются в итоге Xт и Rт. Полное сопротивление Zт определяется из теоремы Пифагора для прямоугольного треугольника по формуле:

Ток КЗ

Расчёт полного сопротивления Zт

При параллельном соединении участков расчет ведется как для параллельно соединенных резисторов, если объединенные параллельные участки обладают реактивным или активным сопротивлениями, получится эквивалентное общее сопротивление:

Ток КЗ

Вычисление Xз

Xт не учитывает влияние индуктивностей, и если расположенные рядом индуктивности влияют друг на друга, то реальное индуктивное сопротивление окажется выше. Необходимо отметить, что вычисление Xз связано только к отдельной независимой цепью, то есть так же без влияния взаимной индуктивности. Если же параллельные цепи расположены близко к друг другу, то сопротивление Хз окажется заметно выше.

Рассмотрим теперь сеть, присоединенную к входу понижающего трансформатора. Трехфазный ток короткого замыкания Iкз или мощность короткого замыкания Pкз определяет поставщик электроэнергии, однако можно исходя из этих данных найти полное эквивалентное сопротивление. Полное эквивалентное сопротивление, одновременно приводящее к эквиваленту для низковольтной стороны:

Ток КЗ

Расчёт полного эквивалентного сопротивления Zкз

Pкз — мощность трехфазного короткого замыкания, U2 – напряжение на холостом ходу низковольтной цепи.

Как правило, активная составляющая сопротивления высоковольтной сети — Rа — очень мала, и сравнительно с индуктивным сопротивлением — ничтожно мало. Традиционно принимают Xa равным 99,5% от Zа, и Ra равным 10% от Xа. В таблице ниже приведены приблизительные данные относительно этих величин для трансформаторов на 500 МВА и 250 МВА.

Читайте так же:
Устройство старых выключателей света

Ток КЗ

Характеристики масляных трансформаторов

Ток КЗ

Характеристики сухих трансформаторов

Полное Zтр — сопротивление трансформатора на стороне низкого напряжения:

Ток КЗ

Расчёт полного сопротивления трансформатора Zтр

Pн — номинальная мощность трансформатора в киловольт-амперах. Активное сопротивление обмоток находится исходя из мощности потерь. Когда ведут приблизительные расчеты, то пренебрегают Rтр, и принимают Zтр = Xтр.

Если требуется принять в расчет выключатель низковольтной цепи, то берется полное сопротивление выключателя, расположенного выше точки короткого замыкания. Индуктивное сопротивление принимают равным 0,00015 Ом на выключатель, а активной составляющей пренебрегают.

Что касается сборных шин, то их активное сопротивление ничтожно мало, реактивная же составляющая распределяется примерно по 0,00015 Ом на метр их длины, причем при увеличении расстояния между шинами вдвое, их реактивное сопротивление возрастает лишь на 10%. Параметры кабелей указывают их производители.

Что касается трехфазного двигателя, то в момент короткого замыкания он переходит в режим генератора, и ток КЗ в обмотках оценивается как Iкз = 3,5*Iн. Для однофазных двигателей увеличением тока в момент короткого замыкания можно пренебречь.

Дуга, сопровождающая обычно короткое замыкание, обладает сопротивлением, которое отнюдь не постоянно, но среднее его значение крайне низко, однако и падение напряжения на дуге невелико, поэтому практически ток снижается примерно на 20%, что облегчает режим срабатывания автоматического выключателя, не нарушая его работу, не влияя особо на ток отключения.

Ток КЗ на приемном конце линии связан с током короткого замыкания на подающем ее конце, но учитывается еще сечение и материал передающих проводов, а также их длина. Имея представление об удельном сопротивлении, каждый сможет произвести этот несложный расчет. Надеемся, что наша статья была для вас полезной.

Статьи (Расчеты)

В данной статье рассматриваются вопросы выбора сечения кабелей напряжением 10кВ, предусмотренные в ПУЭ изд.6 и другой технической литературе.

Если сечение кабелей, определенное по вышеперечисленным условиям, получается меньше сечения, требуемого по другим условиям, то должно приниматься наибольшее сечение, требуемое этими условиями.

I. 1). Кабели должны удовлетворять требованиям в отношении предельно допустимого нагрева с учетом нормальных, а также послеаварийных режимов.

Для кабелей с бумажной пропитанной изоляцией (ААБлУ; АСБл и т.п.), несущих нагрузки меньше номинальных, и проложенных в земле, может допускаться кратковременная перегрузка (КВП), где тогда КВП = 1,10 в течение 3,0 часов), а на период ликвидации послеаварийного режима допускаются перегрузки (ПГ) не более 1,20 в течение 5 сут. при длительности максимума 6 часов в сутки.

На период ликвидации послеаварийного режима для кабелей с полиэтиленовой изоляцией допускается перегрузка до 10%, а для кабелей с ПВХ изоляцией – до 15% на время не более 6 часов в сутки в течение 5 суток. Допустимая температура жилы кабеля: 10кВ (+60°С).

Для кабелей с резиновой или пластмассовой изоляцией (АВВГ; АВБбШв и т.п.) допустимая температура жилы кабеля ( 65°С) и земли (+15°С).

Для кабелей с изоляцией из сшитого полиэтилена допустимая температура жилы кабеля: 90°С.

2). Сечение кабелей должно быть проверено по экономической плотности тока для нормального режима работы (ток в послеаварийном режиме не учитывается).

3). Кабели подлежат проверке на условия нагревания жил током короткого замыкания (КЗ), т.е. по термической устойчивости току короткого замыкания. Повышение температуры жил кабелей при КЗ ведет к химическому разложению изоляции и резкому снижению ее электрической и механической прочности и, в итоге, — к аварии.

4). Сечение кабелей проверяется по потере напряжения.

II. Для кабелей 10кВ с изоляцией из сшитого полиэтилена, кроме того, проверяется медный экран на термическую устойчивость при 2-х фазном токе короткого замыкания (КЗ).

ТП с 2-мя силовыми трансформаторами по 2500 кВА питается от ПС, находящейся на расстоянии 4,0 км. Напряжение сети 10 кВ. Расчетная нагрузка супермаркета составляет Sр= 3250 кВА. Продолжительность часов использования максимума нагрузки – 8780ч. (работа полные сутки -24 часа). Принимаются кабели марки ААБлУ-10кВ, которые прокладываются в земле. По ТУ кабельной сети ток 3-х фазного короткого замыкания «КЗ» на шинах подстанции составляет 7,5 кА. Выдержка времени максимальной защиты на отходящей линии tв=1,4с, время отключения выключателя tо=0,3с.

Читайте так же:
Таблица подбора сечения кабеля по силе тока

1). Выбор сечения кабеля ААБлУ-10кВ по нагреву в послеаварийном режиме (работа одного кабеля)

Расчетный ток нагрузки на РУ-10кВ ТП:

Расчетный ток на один кабель:

Iр=182 / 2= 91А (нормальный режим).

Предварительно выбираем сечения кабеля 95мм 2 .

Допустимый длительный ток табличный (Iд.т.) для сечения 95мм 2 составляет 205 А (ПУЭ, изд. 6, табл. 1.3.16). С учетом следующих коэффициентов к Iд.т.:

К1=1,10 (ПУЭ, изд. 6, табл. 1.3.3, п. 1.3.13) на температуру земли зимой для Московской области для максимума нагрузки;

К2=0,87 (ПУЭ, изд. 6, табл. 1.3.23) на удельное сопротивление почвы (с учетом геологических изысканий);

К3=0,92 (ПУЭ, изд. 6, табл. 1.3.26) на количество работающих кабелей, лежащих рядом в земле.

Таким образом, фактически допустимый длительный ток Iф для кабеля, сечением 95мм 2 , составляет:

Iф= Iд.т. х К = 205 х 0,88 = 180А, Iр = 182А (см.выше).

Условие: Iф≥Iр, но 180А≤182А т.е. условие не выполняется. Необходимо принять сечения кабеля – 120мм 2 , для которого Iд.т.=240А, а Iф=240х0,88=211А, т.е. 211А≥182А, т.е условие выполняется.

2). Выбор кабеля ААБ2л-10кВ сечением 3х120мм 2 по экономической плотности тока.

Sэк – сечение по экономической плотности тока (мм 2 ) — по нормальному режиму.

Jэк – 1,2 А/мм 2 – экономическая плотность тока (ПУЭ, изд. 6, табл. 1.3.36).

Условие 120мм 2 ≥ 76мм 2 выполняется.

3). Проверка кабеля ААБ2л-10кВ сечением 3х120мм 2 по термической устойчивости.

Iк.з. (3ф) = 7,5кА, выдержка времени максимальной защиты на отходящей линии tв=1,4с, время отключения выключателя tо=0,3с ( по ТУ кабельной сети, см . выше).

Тогда действительное время отключения линии tл=1,4с + 0,3с = 1,7с.

Минимальное сечение кабеля по термической устойчивости:

где С=95 – постоянное значение для кабелей с алюминиевыми жилами 10кВ.

Smin = 7500А х √1,7 / 95= 103мм 2 .

Условие 120мм 2 ≥ 103мм 2 выполняется.

4). Выбор кабеля по потере напряжения.

ΔU = ΔUтабл. х М (МВт⋅км) = 0,3 х 1,63МВт х 4,0км = 1,95%,

где ΔUтабличная удельная величина потери напряжения (Пособие к ВСН 97-83).

Условие по потере напряжения выполняется (принимается нормальный режим, т.е работа 2-х кабелей при нагрузке Sр=3,25/2=1,63 МВт).

II. Для кабелей 10кВ с изоляцией из сшитого полиэтилена проверяется медный экран на термическую устойчивость при 2-х фазном токе короткого замыкания (КЗ).

Кабельная сеть «Моэнерго» должна представить:

  • 3-х фазный ток «КЗ» на шинах ПС;
  • время срабатывания защиты на данной линии (в нашем примере tв=1,25с).

2-х фазный ток «КЗ» = 0,87 тока 3-х фазного «КЗ».

Условие: Iд.э. ≥ I2ф«кз», где Iд.э – допустимый ток медного экрана; I2ф«кз» — 2-х фазный ток «КЗ».

Номинальное сечение (Sэ) медного экрана; мм 2t=0,7с; кАt=1,0с; кАt=1,4с; кА
163,93,32,8
256,075,14,36
358,457,16,04
5012,1410,28,67
7017,0214,312,16
9523,0919,416,49

1. Допустимый ток (Iд.э) «КЗ» медных экранов можно определить по формуле:

где Sэ — заданное сечение для определения допустимого тока (Iд.э) «КЗ» медных экранов (для t=1,0с).

2. Для продолжительности «КЗ», отличающегося от 1сек. значение времени определяется:

где К= 1/√t, где t – продолжительность «КЗ» в секундах.

Кабельная сеть «Моэнерго» представила:

  • ток «КЗ» на шинах ПС равный 4,7 кА,
  • время срабатывания защиты на данной линии (в нашем примере tв=1,25с).

По расчетным данным принят кабель марки АПвП-10кВ с изоляцией из сшитого полиэтилена сечением 150 мм 2 и с медным экраном 25 мм 2 : 3(1х150/25)мм 2 .

1. При заданном сечении экрана 25мм 2 и tв=1,0с допустимый ток (Iд.э) «КЗ» медных экранов по таблице № 1 составит 5,1 кА.

2. В примере tв=1,25с, тогда находим «К»:

К = 1 / √t = 1 / √1,25 = 0,83с

3. При tв=0,83с определяем допустимый ток (Iд.э) «КЗ» медного экрана:

Iд.э = 5,1кА х 0,83 =4,2кА

(это допустимый ток Iд.э «КЗ» медного экрана сечением 25мм 2 за время tв=1,25с).

6. Определяем 2-х фазный ток «КЗ»:

Iкз-2ф = 0,87 х 4,7кА = 4,1кА.

5. Условие выполнения: Iд.э ≥ Iкз-2ф, т.е. 4,2кА ≥ 4,1кА – условие выполняется, сечение экрана выбрано правильно.

Читайте так же:
Подсветка выключателя сверху или снизу

И.В. ПАСТУХОВА,
начальник отдела экспертизы инженерного обеспечения ГУ МО «Мособлгосэкспертиза»

Л.Г. НАСАНОВСКИЙ,
глав. специалист отдела экспертизы инженерного обеспечения ГУ МО «Мособлгосэкспертиза»

Пример расчета тока трехфазного к.з. в сети 0,4 кВ

В данном примере будет рассматриваться расчет тока трехфазного короткого замыкания в сети 0,4 кВ для схемы представленной на рис.1.

Рис.1 - Однолинейная схема питания и расчетная схема замещения

1. Ток короткого замыкания на зажимах ВН трансформатора 6/0,4 кВ составляет — 11 кА.

2. Питающий трансформатор типа ТМ — 400, основные технические характеристики принимаются по тех. информации на трансформатор:

  • номинальная мощностью Sн.т — 400 кВА;
  • номинальное напряжение обмотки ВН Uн.т.ВН – 6 кВ;
  • номинальное напряжение обмотки НН Uн.т.НН – 0,4 кВ;
  • напряжение КЗ тр-ра Uк – 4,5%;
  • мощность потерь КЗ в трансформаторе Рк – 5,5 кВт;
  • группа соединений обмоток по ГОСТ 11677-75 – Y/Yн-0;

3. Трансформатор соединен со сборкой 400 В, алюминиевыми шинами типа АД31Т по ГОСТ 15176-89 сечением 50х5 мм. Шины расположены в одной плоскости — вертикально, расстояние между ними 200 мм. Общая длина шин от выводов трансформатора до вводного автомата QF1 составляет 15 м.

4. На стороне 0,4 кВ установлен вводной автомат типа XS1250CE1000 на 1000 А (фирмы SOCOMEC), на отходящих линиях установлены автоматические выключатели типа E250SCF200 на 200 А (фирмы SOCOMEC) и трансформаторы тока типа ТСА 22 200/5 с классом точности 1 (фирмы SOCOMEC).

5. Кабельная линия выполнена алюминиевым кабелем марки АВВГнг сечением 3х70+1х35.

Для того, чтобы рассчитать токи КЗ, мы сначала должны составить схему замещения, которая состоит из всех сопротивлений цепи КЗ, после этого, определяем все сопротивления входящие в цепь КЗ. Активные и индуктивные сопротивления всех элементов схемы замещения выражаются в миллиомах (мОм).

Зачем вообще рассчитывать ток короткого замыкания?

Прежде всего это делается для выбора и проверки аппаратов, устанавливаемых в цепи протекания тока короткого замыкания (КЗ). Чтобы при возникновении КЗ аппарат не разрушился, а в случае с выключателем был способен отключить протекающий через него ток.
Есть еще одно назначение у расчетов тока короткого замыкания- это выбор уставок релейной защиты. Дело в том, что часть защит, например, токовые отсечки, могут отстраиваться от токов короткого замыкания. Следовательно, чтобы выполнить расчет их уставок необходимо рассчитать ток КЗ. Для проверки чувствительности уставок защит также необходимо знать значения токов КЗ в различных точках сети.

Определение сопротивлений питающей энергосистемы

В практических расчетах для упрощения расчетов токов к.з. учитывается только индуктивное сопротивление энергосистемы, которое равно полному. Активное сопротивление не учитывается, данные упрощения на точность расчетов – не влияют!

1.1 Определяем сопротивление энергосистемы со стороны ВН по выражению 2-7 [Л1. с. 28]:

1.1 Определяем сопротивление энергосистемы со стороны ВН по выражению 2-7 [Л1. с. 28]

1.2 Определяем сопротивление энергосистемы приведенное к напряжению 0,4 кВ по выражению 2-6 [Л1. с. 28]:

1.2 Определяем сопротивление энергосистемы приведенное к напряжению 0,4 кВ по выражению 2-6 [Л1. с. 28]

От чего зависит

Ток короткого замыкания образуется в тот момент, когда генерируются и разделяются сгенерированные носители при помощи света, в дополнение к теме, как определить ток короткого замыкания источника. Часто он равняется светопотоку, поэтому считается минимальным. Зависит от:

  • площади и плотности;
  • число фотонов или мощности падающего показателя излучения;
  • световой интенсивности;
  • спектра падающего излучения;
  • оптического свойства, поглощения и отражения;
  • вероятности разделения СЭ, поверхностной пассивации и времени.

Обратите внимание! Также он зависит от возникающего в проводнике электрического поля, от времени и пути токового протекания. Находится в зависимости от заряда с его концентрацией, скоростью и площади поперечного проводникового сечения. Равен напряжению, поделенному на проводниковое сопротивление. Измеряется в амперах.


Зависимость электротока

Определение сопротивлений трансформатора 6/0,4 кВ

2.1 Определяем полное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-8 [Л1. с. 28]:

2.2 Определяем активное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-9 [Л1. с. 28]:

2.3 Определяем индуктивное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-10 [Л1. с. 28]:

Для упрощения расчетов можно воспользоваться таблицей 2.4 [Л1. с. 28], как видно из результатов расчетов, активные и индуктивные сопротивления совпадают со значениями таблицы 2.4.

Таблица 2.4 - Значения активных и индуктивных сопротивлений трансформаторов

Определение сопротивлений шин

3.1 Определяем индуктивное сопротивление алюминиевых прямоугольных шин типа АД31Т сечением 50х5 по выражению 2-12 [Л1. с. 29]:

3.1.1 Определяем среднее геометрическое расстояние между фазами 1, 2 и 3:

3.2 По таблице 2.6 определяем активное погонное сопротивление для алюминиевой шины сечением 50х5, где rуд. = 0,142 мОм/м.

Для упрощения расчетов, значения сопротивлений шин и шинопроводов, можно применять из таблицы 2.6 и 2.7 [Л1. с. 31].

Таблицы 2.6, 2.7 - Активное и индуктивное удельные сопротивления шин и шинопроводов

3.3 Определяем сопротивление шин, учитывая длину от трансформатора ТМ-400 до РУ-0,4 кВ:

Определение сопротивлений трансформаторов тока

Значения активных и индуктивных сопротивлений обмоток для одного трансформатора тока типа ТСА 22 200/5 с классом точности 1, определяем по приложению 5 таблица 20 ГОСТ 28249-93, соответственно rта = 0,67 мОм, хта = 0,42 мОм.

Таблица 20 - Значения активных и индуктивных сопротивлений трансформаторов тока ГОСТ 28249-93

Активным и индуктивным сопротивлением одновитковых трансформаторов (на токи более 500 А) при расчетах токов КЗ можно пренебречь.

Согласно [Л1. с. 32] для упрощения расчетов, сопротивления трансформаторов тока не учитывают ввиду почти незаметного влияния на токи КЗ.

Определение сопротивлений автоматических выключателей

Определяем активное сопротивление контактов по приложению 4 таблица 19 ГОСТ 28249-93:

  • для рубильника на ток 1000 А – rав1 = 0,12 мОм;
  • для автоматического выключателя на ток 200 А — rав2 = 0,60 мОм.

Таблица 19 - Значения сопротивлений разъемных контактов коммутационных аппаратов напряжением до 1 кВ ГОСТ 28249-93

Источники

Источником выступает в быту поврежденная электрическая проводка, незаземленный кабель или нагретый поврежденный провод.

Стоит указать, что электроток происходит в одно-, двух- и трехфазной цепи во время замыкания фазы на землю или нейтрального провода, нескольких фаз, одновременного переключения фаз на землю. Бывает межвитковым и обмоточным на металлокорпус.

Чтобы защититься от него, нужно поставить токоограничивающего вида электрореакторы, распараллелить электроцепи, отключить секционные и шиносоединительные выключатели, использовать трансформаторы, имеющие расщепленную обмотку, использовать коммутационный аппарат, который отключает поврежденное оборудование. Также нужно применить релейную защиту вместе с плавкими предохранителями и автоматическими выключателями.

Вам это будет интересно Особенности переходного сопротивления


Источники

Определение сопротивлений контактных соединений кабелей и шинопроводов

Для упрощения расчетов, сопротивления контактных соединений кабелей и шинопроводов, я пренебрегаю, ввиду почти незаметного влияния на токи КЗ.

Если же вы будете использовать в своем расчете ТКЗ значения сопротивления контактных соединений кабелей и шинопроводов, то они принимаются по приложению 4 таблицы 17,18 ГОСТ 28249-93.

При приближенном учете сопротивлений контактов принимают:

  • rк = 0,1 мОм — для контактных соединений кабелей;
  • rк = 0,01 мОм — для шинопроводов.

Таблицы 17,18 - Значения сопротивления контактных соединений кабелей и шинопроводов ГОСТ 28249-93

Виды коротких замыканий

Понятие короткого замыкания заключается в непосредственном непреднамеренном соединении любых двух точек, расположенных на различных фазах, нулевом проводе или земле. Вариантов таких соединений может быть очень много, и все они не предусмотрены нормальными условиями эксплуатации установок, оборудования и сетей.

Среди основных видов КЗ следует отметить однофазное и трехфазное. В первом случае одна из фаз замыкается и взаимодействует с нулевым проводом или землей. Аналогичные явления наблюдаются во время обрывов проводов и одновременных замыканий двух разных фаз.

Мощность короткого замыкания

При трехфазном коротком замыкании хорошо заметна определенная симметрия, так как все фазы находятся в одних и тех же условиях. Поэтому токи в каждой из них будут одинаковыми. Другие виды КЗ относятся к несимметричным, поскольку фазы попадают в неодинаковые условия. В результате, токи и напряжения получаются с искаженной амплитудой, в зависимости от конкретных условий аварии.

Следует учесть, что при коротком замыкании происходит заметное снижение общего электрического сопротивления в системах. Это приводит к резкому увеличению токов во всех ветвях сетей и одновременному снижению напряжения на отдельных участках.

Среди основных причин, вызывающих аварийные ситуации подобного рода, можно выделить следующие:

  • Нарушенная изоляция в токоведущих частях. Причинами становится ее неудовлетворительное состояние, естественное старение, механические повреждения, постоянное воздействие перенапряжений.
  • Поврежденные опоры и провода ЛЭП из-за неудовлетворительного состояния, негативного влияния ураганных ветров, гололеда, раскачивания проводов и т.д.
  • Ошибочные действия персонала при выполнении различных операций. Например, разъединители отключаются, находясь под нагрузкой или включаются на заземление, оставленное по ошибке.

Причинами большинства повреждений являются конструктивные недостатки, несовершенное оборудование, ошибки, допущенные при проектировании и в процессе монтажа. Отрицательную роль играет использование оборудования в ненормативных режимах, неправильный и неудовлетворительный уход за ним.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector