Alma38.ru

Электро Свет
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Автоматические выключатели: функции, конструкция, принцип работы, грамотный выбор

Автоматические выключатели: функции, конструкция, принцип работы, грамотный выбор

Автоматические выключатели: функции, конструкция, принцип работы, грамотный выбор

Возможное возгорание электропроводки необходимо вовремя и грамотно предупреждать, а не кусать локти, созерцая последствия разрушения, нанесенные огнем.

В былые времена функцию защиты от перегруза сети и короткого замыкания выполняли фарфоровые предохранители, на смену которым впоследствии пришли автоматические пробки.

Но продолжающийся рост нагрузки на электрические сети внес дальнейшие коррективы в область безопасности. И на смену устаревшим устройствам пришли надежные автоматические выключатели.

Чтобы купить автоматический выключатель надлежащего качества и с нужными техническими характеристиками, нужно располагать сведениями о технических нюансах данного оборудования.

Какая функция возложена на автоматические выключатели?

С помощью автоматических выключателей осуществляется защита изоляции силовых кабелей от возможного оплавления и возгорания. Их основная задача — предотвращение перегрева и недопущение поступления сверхтоков в электрическую цепь.

Функция автоматических выключателей

Функция автоматических выключателей

Стоит особо подчеркнуть тот факт, что автоматы не смогут уберечь бытовую технику и их владельцев от поражения током. Эту задачу выполняют установленные в электрической цепи УЗО.

Функция автоматических выключателей

Следует понимать, что для каждого участка электрической цепи требуются свой автоматический выключатель с нужными параметрами.

На первый взгляд может показаться, что проще установить везде самые мощные автоматы, чем вникать в суть их выбора. Но на самом деле не все так однозначно.

Автоматический выключатель, имеющий завышенные характеристики, будет негативно сказываться на проводке — она будет плавиться или даже гореть из-за несвоевременного отключения автомата, который в данном случае будет пропускать критические для этой проводки токи.

Автоматический выключатель, имеющий заниженные характеристики, ведет себя не лучше. При пользовании бытовыми приборами он начнет постоянно разрывать цепь, что в конце концов приведет к «залипанию» его контактов.

Автоматический выключатель: конструкция и принцип работы

Итак, как же устроен автоматический выключатель?

Принцип работы автоматических выключателей

Основные функции в автомате возложены на расцепители, которые разрывают цепь, если эксплуатационные нормативные параметры превышены. Расцепители различны по своему функционалу.

Расцепители в автоматических выключателях

Расцепители в автоматических выключателях

Расцепители в автоматических выключателях

Не менее важны и другие составляющие, которые обеспечивают комплексную защиту.

Комплексная защита в автоматических выключателях

Комплексная защита в автоматических выключателях

Выбор автоматического выключателя

При покупке автоматического выключателя необходимо обращать внимание на четыре основных параметра:

  • номинальная отключающая способность;
  • количество полюсов;
  • время-токовая характеристика;
  • номинальный рабочий ток.

1. Номинальная отключающая способность

Данный параметр показывает при каком токе произойдет срабатывание автомата, цепь разомкнется и проводка обесточится. Вариантов по данному показателю три: 4.5 кА, 6 кА, 10 кА.

Номинальная отключающая способность в автоматических выключателях

В бытовой сфере по большей части используются автоматы 6 кА. Выключатели с параметром 4.5 кА в большинстве случаев не способны поддерживать надежную защиту современных электросетей.

Номинальная отключающая способность в автоматических выключателях

Номинальная отключающая способность в автоматических выключателях

2. Количество полюсов

По данному параметру потребитель может определить какое количество проводов он сможет максимально подключить для обеспечения сетевой защиты.

Однополюсные автоматические выключатели

Однополюсные автоматические выключатели

Двухполюсные автоматические выключатели

Двухполюсные автоматические выключатели

Трехполюсные автоматические выключатели

Трехполюсные автоматические выключатели

Четырехполюсные автоматические выключатели

Четырехполюсные автоматические выключатели

Полюса автоматических выключателей

3. Время-токовая характеристика

Автоматы могут иметь одинаковую номинальную мощность, но при этом потреблять разное количество электроэнергии. В зависимости от нагрузки на сеть, иногда происходят довольно значительные колебания, которые могут приводить к ложному срабатыванию автоматического выключателя.

Время-токовая характеристика автоматических выключателей

Чтобы свести к минимуму такое ложное срабатывание при некритических изменениях, необходимо использовать автомат с подходящей временно-токовой характеристикой.

Время-токовая характеристика автоматических выключателей

Время-токовая характеристика автоматических выключателей

Время-токовая характеристика автоматических выключателей

Рассматриваемый параметр указывает через какой промежуток времени произойдет срабатывание автомата и каково будет отношение силы ток к постоянному току.

Время-токовая характеристика автоматических выключателей

4. Номинальный рабочий ток

Данный показатель отвечает насколько быстро сработает автомат, когда действующий ток превысит номинальное значение. Модификаций автоматов по этому параметру 12 — 1А, 2А, 3А, 6А, 10А, 16А, 20А, 25А, 32А, 40А.

Читайте так же:
Ремонт трансформаторов ремонт воздушных выключателей

Номинальный рабочий ток автоматических выключателей

При выборе автоматического выключателя по данному параметру учитывают:

  • мощность имеющейся электропроводки;
  • допустимый ток для данной проводки в режиме эксплуатации.

Номинальный рабочий ток автоматических выключателей

Изучив характеристики автоматических выключателей, можно точно определить какие из них подойдут для вашей конкретной цели. А в расчетах вам помогут следующие параметры.

Устройство и принцип работы классической АКПП

С развитием автомобилестроения и выпуском новых видов трансмиссий вопрос, какая коробка передач лучше, становится все более актуальным. АКПП – что это такое? В этой статье разберемся с устройством и принципом работы автоматической коробки передач, узнаем, какие виды АКПП существуют и кто придумал АКПП. Проанализируем достоинства и недостатки разных видов автоматических трансмиссий. Познакомимся с режимами работы и управления АКПП.

Что такое АКПП и история ее создания

Селектор АКПП

Автоматическая коробка передач, или АКПП, представляет собой трансмиссию, обеспечивающую выбор оптимального передаточного числа в соответствии с условиями движения без участия водителя. Это обеспечивает хорошую плавность хода автомобиля, а также комфорт при движении для водителя.

В настоящее время существует несколько видов автоматической КПП:

  • гидромеханическая (классическая);
  • механическая с двумя сцеплениями (например, DSG); ; .

В данной статье все внимание будет уделено классическому автомату.

История изобретения

Основу автоматической трансмиссии составляет планетарная коробка передач и гидротрансформатор, впервые изобретенный исключительно для нужд судостроения в 1902 году немецким инженером Германом Фиттенгером. Далее в 1904 году братья Стартевенты из Бостона представили свой вариант автоматической КПП, имеющий две коробки передач и напоминающий чуть доработанную механику.

Первая АКПП

Автомобиль, оснащенный планетарной коробкой передач, впервые увидел свет под маркой Ford Т. Суть коробки заключалась в плавном переключении скоростей за счет двух педалей. Первая включала повышающую и понижающую передачи, а вторая – заднюю.

Эстафету приняла компания General Motors, которая в середине 1930-х годов выпустила полуавтоматическую трансмиссию. Сцепление в автомобиле еще продолжало присутствовать, а планетарным механизмом управляла гидравлика.

Приблизительно в это же время компания Крайслер доработала конструкцию коробки гидромуфтой, а вместо двухступенчатой коробки стал использоваться овердрайв – повышающая передача с передаточным числом менее единицы.

Первую в мире полностью автоматическую КПП в 1940 году создала все та же компания General Motors. АКПП представляла собой сочетание гидромуфты с четырехступенчатой планетарной коробкой с автоматическим управлением посредством гидравлики.

Сегодня известны уже шести-, семи-, восьми- и девятиступенчатые АКПП, производителями которых являются как автоконцерны (KIA, Hyundai, BMW, VAG), так и специализированные компании (ZF, Aisin, Jatco).

Плюсы и минусы АКПП

Как и любая коробка передач, автоматическая трансмиссия имеет как плюсы, так и минусы. Представим их в виде таблицы.

Плюсы АКППМинусы АКПП
1. Плавное и автоматическое переключение скоростей, создающее комфорт для водителя.1. Сложность конструкции.
2. Отсутствие необходимости в периодической замене сцепления.2. Высокая стоимость самой коробки.
3. Хорошая динамика за счет возможности ручного переключения скоростей.3. Высокая стоимость ее обслуживания.
4. Автомат может подстраиваться под стиль вождения водителя (адаптироваться).4. Более низкий КПД и повышенный расход топлива в сравнении с механикой.

Устройство автоматической трансмиссии

akpp scheme

Устройство АКПП достаточно сложное и состоит из следующих основных элементов:

    ;
  • планетарный механизм;
  • блок управления АКПП (TCU); ; ;
  • гидроблок;
  • ленточный тормоз;
  • масляный насос;
  • корпус.

Гидротрансформатор представляет собой корпус, заполненный специальной рабочей жидкостью ATF, и предназначен для передачи крутящего момента от двигателя к коробке передач. Фактически он заменяет сцепление. В его состав входят насосное, турбинное и реакторное колеса, блокировочная муфта и муфта свободного хода.

Читайте так же:
Силовой автоматический выключатель код тн вэд

Колеса оснащены лопастями с каналами для прохода рабочей жидкости. Блокировочная муфта необходима для блокировки гидротрансформатора в конкретных режимах работы автомобиля. Муфта свободного хода (обгонная муфта) необходима для вращения реакторного колеса в противоположную сторону. Более подробно про гидротрансформатор можно почитать здесь.

Планетарный механизм АКП включает в себя планетарные ряды, валы, барабаны с фрикционными муфтами, а также обгонную муфту и ленточный тормоз.

Механизм переключения скоростей в АКПП достаточно сложен, и, по сути дела, работа трансмиссии состоит в выполнении некоторого алгоритма включения и выключения муфт и тормозов посредством давления жидкости.

Планетарный ряд, точнее блокировка одного из его элементов (солнечная шестерня, саттелиты, коронная шестерня, водило), обеспечивает передачу вращения и изменение крутящего момента. Элементы, входящие в планетарный ряд, блокируются при помощи обгонной муфты, ленточного тормоза и фрикционных муфт.

gidroshema

Блок управления АКПП может быть гидравлическим (уже не применяется) и электронным (ЭБУ АКПП). Современная гидромеханическая трансмиссия оснащается только электронным блоком управления. Он обрабатывает сигналы датчиков и формирует управляющие сигналы на исполнительные устройства (клапаны) гидроблока, обеспечивающие работу фрикционных муфт, а также управляющие потоками рабочей жидкости. В зависимости от этого жидкость под давлением направляется в ту или иную муфту, включая определенную передачу. TCU также управляет блокировкой гидротрансформатора. При неисправности блок TCU обеспечивает функционирование КПП в “аварийном режиме”. Селектор АКПП отвечает за переключение режимов работы КПП.

В автоматической коробке применяются следующие датчики:

  • датчик частоты вращения на входе;
  • датчик частоты вращения на выходе; ;
  • датчик положения рычага селектора;
  • датчик давления масла.

Подробнее про датчики АКПП можно почитать тут.

Принцип работы и срок службы АКПП

Время, необходимое на переключение скорости в АКПП, зависит от скорости автомобиля и нагрузки на двигатель. Система управления вычисляет нужные действия и передает их в виде гидравлических воздействий. Гидравлика перемещает муфты и тормоза планетарного механизма, тем самым происходит автоматическое изменение передаточного числа в соответствии с оптимальным режимом двигателя в данных условиях.

Одним из главных показателей, влияющих на эффективность работы автоматической трансмиссии, является уровень масла, который нужно регулярно проверять. Рабочая температура масла (ATF) составляет около 80 градусов. Поэтому для того, чтобы избежать повреждений пластиковых механизмов коробки в зимний период, перед движением машину необходимо прогревать. А в жаркое время года, наоборот, охлаждать.
Охлаждение АКПП может осуществляться охлаждающей жидкостью или воздухом (с помощью масляного радиатора).

АКПП в разрезе

Наибольшее распространение получил жидкостный радиатор. Температура atf, необходимая для нормальной работы двигателя, не должна превышать 20% от температуры в системе охлаждения. Температура охлаждающей жидкости не должна превышать 80 градусов, за счет этого и происходит охлаждение atf. Теплообменник соединен с внешней частью корпуса масляного насоса, к которой крепится и фильтр. При циркуляции масла в фильтре происходит его контакт с жидкостью охлаждения через тонкие стенки каналов.

Кстати, автоматическая трансмиссия считается очень тяжелой. Вес АКПП составляет около 70 кг (если она сухая и без гидротрансформатора) и около 110 кг (если она заправленная).

Для нормального функционирования АКПП необходимо и правильное давление масла. От этого во многом зависит срок службы АКПП. Давление масла должно быть на уровне 2,5-4,5 бар.

Читайте так же:
Размыкание контакта конечный выключатель

Ресурс коробки-автомат может быть различен. Если в одном автомобиле трансмиссия может прослужить только 100 тысяч км., то в другом – порядка 500 тысяч. Это зависит от эксплуатации автомобиля, от регулярного контроля за уровнем масла и его замены вместе с фильтром. Продлить ресурс АКПП возможно также используя оригинальные расходные материалы и своевременно обслуживая КПП.

Управление АКПП

Управление автоматической трансмиссией осуществляет селектор АКПП. Режимы работы автоматической трансмиссии зависят от перемещения рычага в определенное положение. В автомате доступны следующие режимы:

  1. Р – Parking. Используется при парковке. В данном режиме механически блокируется выходной вал трансмиссии.
  2. R – Reverse. Используется для включения передачи заднего хода.
  3. N – Neutral. Нейтральный режим.
  4. D – Drive. Движение вперед в режиме автоматического переключения скоростей.
  5. M – Manual. Режим ручного переключения скоростей.

В современных автоматических трансмиссиях с большим числом рабочих диапазонов могут использоваться дополнительные режимы работы:

  • (D), или O/D— овердрайв – «экономичный» режим движения, при котором возможно автоматическое переключение на повышающую передачу;
  • D3, или O/D OFF— расшифровывается как “отключение овердрайва”, это активный режим движения;
  • S (либо цифра 2) — диапазон пониженных передач (первая и вторая, либо только вторая передача) , «зимний режим»;
  • L (либо цифра 1) — второй диапазон пониженных передач (только первая передача).

Также имеются и дополнительные кнопки, характеризующие режимы работы АКП:

  • кнопка Sport, или Power — переключение передач происходит на более высоких оборотах двигателя;
  • кнопка Winter, или Snow — движение с места происходит со второй или третьей передачи;
  • кнопка Shift lock (шифт лок) — возможность разблокирования селектора при остановленном двигателе.

В некоторых коробках есть режим “кик даун” (kick-down). Режим “кик даун” предполагает резкое ускорение транспортного средства путем переключения на пониженную передачу. В некоторых случаях режим “кик даун” запрещен при отключении режима овердрайв.

Заключение

Автоматическая КПП занимает достойное место среди известных коробок передач и составляет конкуренцию привычной механике. Разнообразие режимов движения, а также плавное переключение передач позволяют водителю наслаждаться комфортным вождением.

Автоматы защиты, зачем они нужны

Как таковые, автоматические выключатели не защищают человека, от токов утечки. Для этой цели служат УЗО или дифференциальные автоматы защиты. Правильно рассчитанный автомат защиты защищают электрический кабель, а следовательно саму групповую цепь от перегрева и короткого замыкания.

Автоматы защиты – устройство

Основой устройства автоматы защиты являются два расцепителя. Именно они реагируют на перегрузку и короткое замыкание в цепи. Согласно СП31-110–2003 во внутренних сетях квартиры применяются автоматы защиты с двумя типами расцепителя, тепловым и электромагнитным. Такие автоматы носят название автоматы с комбинированным расцепителем.

Автоматы защиты устройство

Тепловые расцепители служат для размыкания цепи при перегрузке.

Работают они следующим образом. Основа теплового расцепителя биметаллическая пластина. В нормальном режиме работы, то есть когда ток с цепи соответствует норме, биметаллическая пластина не работает. При увеличении тока в цепи, а возникает это при перегрузке или коротком замыкании, биметаллическая пластина деформируется и «щелкает» по механизму расцепления. Все цепь разомкнута, автомат выполнил свою задачу. После остывания и взведении рычага управления автомат опять готов к работе.

Так как процесс нагрева процесс не моментальный, то автоматы защиты срабатывают на перегрузку с временной задержкой, порой очень длительной.

Если для защиты групповой цепи ставить автомат защиты, только с тепловым расцепителем, то для защиты от короткого замыкания цепи требуется дополнительно установить плавкий предохранитель.

Вторым расцепителем в автомате защиты, является индукционный или электромагнитный расцепитель. Этот тип расцепителя срабатывают моментально. Предназначен индукционный для защиты электрической цепи от короткого замыкания.

Читайте так же:
Проходной выключатель схема подключения подробно

Принцип работы индукционного расцепителя в следующем. Механизм расцепления это сердечник двигающийся внутри катушки. При нормальном режиме он замкнут. При аварийном режиме увеличение тока в катушке, приводит к втягиванию сердечника и цепь расцепляется.

Относительный недостаток индукционного расцепителя, это срабатывание при токах (токи отключения) значительно превышающих номинальные токи цепи. Такие токи могут возникать только при коротком замыкании (КЗ).

Значение тока отключения индукционного автомата зависит от типа покупаемого автомата защиты. О типах автоматов защиты чуть ниже по тексту.

Автоматы защиты по время-токовой характеристике

Не буду занимать ваше внимание теорией, просто скажу, что время-токовая характеристика “придумана” за тем, чтобы разделить автоматы защиты по месту их применения. А за основу взяты следующие вычисления тока защиты от короткого замыкания (КЗ):

  • Тип B: Ток защиты (отключения) при КЗ от 3 до 5 значений номинального тока в цепи.
  • Тип C: Ток защиты (отключения) при КЗ от 5 до 10 значений номинального тока в цепи.
  • Тип D: Ток защиты (отключения) при КЗ от 10 до 20 значений номинального тока в цепи.

На самом деле для практики, приведенные выше значения токов отключения, не имеют особого значения. Для практики, большее значение имеет места применения автоматов защиты в зависимости от типа: B; C; D; K; Z. Смотрим таблицу.

Автоматы защиты

Разделение автоматов на типы, происходит по их характеристикам зависимости токов отсечки и времени отсечки, называемых время-токовые характеристики. Для электросети квартиры актуальны автоматы типа B и C.

Тип автомата вы можете увидеть, при покупке автомата, на его корпусе в связке с номинальным током. Например: C16A. Это значит автомат защиты типа C на номинальный ток 16 Ампер. Или B32A – это автомат типа B на 32 Ампера.

Автоматы защиты, тип B

Практика применения знаний про автоматы защиты

Например. У вас в квартире групповая цепь из 8 розеток для устройств со средней мощностью 300 Вт. Рассчитаем минимально допустимый ток срабатывания автомата защиты и выберем его тип.

  • I номин.= 300×8⁄220=10,9 А;
  • I расчетная автомата защиты= 10,9×1,45=15,8 А.
  • Розеточная группа, значит тип автомата C.

Рассчитанный таким образом расчетный ток автомата защиты, не может служить основанием для установки автомата защиты, C16A. В окончательном расчете автомата защиты нужно учесть сечение токопроводящих жил кабеля и способ их прокладки. Сечение жил связать с допустимым током нагрузки на кабель, по нему рассчитать ток автомата защиты, сравнить его с расчетным током автомата защиты, как в этом примере, и только потом определить номинал автомата защиты.

Особенности конструкции и принцип работы автоматических выключателей

Схема

Автоматический выключатель, который в обязательном порядке должен использоваться в любых системах электроснабжения, существенно отличается от обычных устройств, предназначенных для включения-отключения освещения в доме. Он представляет собой защитное устройство, которое справляется с выполнением сразу нескольких важных функций:

  • коммутация электрической цепи, предоставление возможности включать или отключать отдельные ее участки;
  • автоматическое отключение защищаемого участка в случае обнаружения слишком больших токов и угрозы возникновения короткого замыкания;
  • защита цепи от сильных перегрузок. К примеру, устройство блокирует отдельный участок системы электроснабжения при включении в сеть электрических приборов слишком большой мощности.

Устройство автоматического выключателя зависит от его типа, а также от целей, для которых используется данное электрического оборудование.

Читайте так же:
Подключение выключателя электродрели с реверсом

Виды автоматических выключателей

Классификация всех устройств, применяемых в бытовой сфере и промышленности достаточно сложна и запутанна, поэтому мы приведем описания лишь нескольких типов оборудования, отличающихся друг от друга своей конструкцией. К ним относятся:

  • воздушные автоматические выключатели. Их основное предназначение – это электрические цепи промышленного назначения. Сила тока в таких системах электроснабжения может достигать несколько тысяч ампер;
  • защитные устройства, выполненные в литом корпусе. В качестве примера можно привести конструкцию трехфазного выключателя, предназначенного для работы в сети с напряжением 380 вольт. Он легко выдерживает токи до 1000 ампер и обеспечивает достаточно надежную защиту цепи как в быту, так и на самых различных производственных, торговых и прочих предприятиях;
  • модульные выключатели, работающие со сравнительно небольшими токами и используемые в подавляющем своем большинстве в обычных городских квартирах и жилых домах.

Чтобы подробно описать устройство автоматического выключателя, мы выбрали именно последнюю разновидность оборудования, так как оно весьма распространена и знакома абсолютно всем.

Конструкция модульных автоматических выключателей

Схема

Все основные элементы устройства располагаются в корпусе, выполненном из материалов, не пропускающих электрический ток. На задней его части находится крепление, позволяющее установить выключатель на специальную DIN-рейку, а также объединить его с другими автоматами защиты, каждый из которых будет отслеживать работу своего участка электрической цепи.

Помимо винтовых клемм и контактов, предназначенных для подключения к системе электроснабжения, устройство состоит из таких элементов:

  • электромагнитный расцепитель, представляющий собой обычный соленоид с сердечником, оснащаемый пружиной. Данный компонент чутко реагирует на короткие замыкания и отключает автомат при быстром нарастании силы тока на защищаемом участке цепи;
  • тепловой расцепитель. Он призван обеспечивать защиту не только от коротких замыканий, но и от перегрузок. Биметаллическая пластина сильно изгибается под воздействием высоких температур и оказывает механическую нагрузку на весь механизм, благодаря чему автомат отключается;
  • дугогасительная камера, которая, как видно из названия, позволяет гасить электрическую дугу, возникающую из-за нарастания силы тока при замыкании;
  • специальное отверстие для отвода газов;
  • одна или несколько рукояток управления устройством, позволяющих отключать или включать автомат вручную.

Как работает автомат защиты

Схема

Подключение прогрузного выключателя к сети осуществляется через предусмотренные в конструкции клеммы и контакты. В обычном режиме устройство просто пропускает через себя ток и направляет его на защищаемый участок электрической цепи. При этом по специальным гибким проводникам он подается сперва на электромагнитный, а затем и на тепловой расцепитель для отслеживания параметров.

Если сила тока внезапно начинает превышать номинальные показатели автомата защиты, температура теплового расцепителя заметно увеличивается. Из-за этого биметаллическая пластина прогибается и воздействует на механизм отключения, благодаря чему подача тока на определенный участок цепи прекращается. Точно таким же образом соленоид электромагнитного соленоида реагирует на короткое замыкание. Он приводит в действие пружину, которая выключает автомат. Благодаря мгновенному срабатыванию соленоидной катушки, обеспечивается защита электроприборов, а также проводки, которая даже не успевает нагреться из-за слишком высоких токов.

Как видите, схема и принцип действия автоматических выключателей являются весьма простыми. Несмотря на это, оборудование способно обеспечить надежную защиту либо всей цепи, либо отдельных ее участков, предотвратить такие опасные последствия короткого замыкания, как выход из строя дорогостоящей техники и электроники, возгорание, оплавление проводки и розеток.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector