Alma38.ru

Электро Свет
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Почему вакуумный выключатель

Почему вакуумный выключатель

Вакуумные выключатели конструктивно разрабатывались сначала как устройство, применяемое только в шкафах КРУ (комплектное распределительное устройство). В настоящее время они используются и для открытых распределительных устройств (ОРУ).

Современный высоковольтный вакуумный выключатель представляет собой быстродействующий коммутационный аппарат нового поколения, рассчитанный на более долгий срок службы, нежели его предшественники с масляной или элегазовой средой для тушения электрической дуги. Статистически процент их применения в электроустановках выше 1000 Вольт стабильно растёт. Китайские энергетики уже полностью отказались от устаревших масляников и полностью перешли на более компактные и не требующие частой профилактики вакуумные выключатели. Вакуумный выключатель довольно неприхотлив и не требует регулярной чистки контактов и смене масла, которое зачастую довольно обильно вытекает из баков. Согласно паспортным данным срок эксплуатации вакуумных выключателей составляет порядка 20 лет.

Во время эксплуатации приводной механизм может выйти со строя, а подать питание на определённый важный механизм в производственной цепочке необходимо, поэтому все выключатели должны быть оборудованы механизмом ручного взвода пружины. А также обязательным является присутствие аварийной кнопки отключения механизмов блокировки выкатывания во включенном состоянии. Это безопасность персонала, поэтому этот момент очень важен.

Эксплуатация и техническое обслуживание

Неприхотливые в обслуживании вакуумные выключатели рекомендуется проверять не реже 1 раза в 4 года. Но периодичность может быть иная. Все зависит от конструктивного исполнения коммутационного аппарата и регламентируется в технической документации.

Обслуживание вакуумных выключателей подразумевает проверку изоляторов на наличие трещин, сколов, загрязнения и следов разрядов.

Камера полюса герметичная, вакуум сохраняется весь срок службы устройства. Поэтому полюса не ремонтируют, а заменяют целиком.

Вдобавок проводятся различные электротехнические испытания:

• Измерение сопротивления изоляции.

• Испытание повышенным напряжением.

• Проверка механических частей.

• Замер времени срабатывания.

• Осмотр состояния контактов (метод основан на измерении сопротивления постоянному току).

После всех проведенных испытаний составляется нормативный документ, свидетельствующий о работоспособности аппарата или его непригодности к дальнейшей эксплуатации.

История появления вакуумных выключателей

Упоминания о первых вакуумных выключателях датируются 30 годами прошлого века. В тот период они использовались преимущественно для коммутации слаботочных цепей с напряжением не более 40 кВ.

Для развивающихся нужд электроэнергетики этого было недостаточно. Поэтому проводились соответствующие исследования по улучшению имеющихся на тот момент вакуумных выключателей. В результате в 1957 году были подробно рассмотрены процессы, возникающие при горении высоковольтной электрической дуги. В последующие 20 лет образцы первых устройств вышли за пределы лабораторий и поступили в массовое производство.

Вакуумный выключатель: полюса и камеры, привод

В вакуумных выключателях внутренней установки используются литые из эпоксидного компаунда полюса. В выключателях наружной установки – цельнолитые полюса в кремнийорганической изоляции. Полюса комплектуются самыми современными вакуумными камерами, которые специально разработаны и оптимальным образом подходят для использования в литых полюсах.

Контакты вакуумных камер выполнены из специальных легированных сплавов. Горение дуги, которая возникает при разведении контактов при отключении нагрузки, поддерживается металлическими парами за счет испарения электродного материала. Электрическая дуга мягко гасится при естественном переходе тока через ноль, поэтому исключается возможность возникновения перенапряжений при коммутации большинства видов нагрузок.

В вакуумных выключателях применяется универсальный электромагнитный привод. Для удержания выключателя во включенном или отключенном положениях используется энергия мощных постоянных магнитов. Фиксация происходит за счет использования принципа «магнитной защелки», а именно, замыкания магнитной цепи включения или отключения якорем, который механически связан с подвижными контактами вакуумных камер.

Для управления приводом используется электронный блок управления, которым оснащен вакуумный высоковольтный выключатель. Блок управления может быть встроен в корпус выключателя или изготовлен в выносном исполнении. Отключение происходит за счет энергии предварительно заряженных конденсаторов.

В выключателях также применяются пружинные приводы, которые помимо нормированного включения/отключения выключателя обеспечивают возможность ручного включения и отключения.

Номинальное напряжение, кВ1027,535110
Наибольшее рабочее напряжение, кВ1230,540,5126
Номинальный ток, А630–3 1501 600; 2 0001 6002 500; 3 150
Номинальный ток отключения, кА20–40252531,5; 40
Ток термической стойкости , кА (3 с)20–40252531,5; 40
Ток электродинамической стойкости, кА52–102646481; 102
Полное время отключения, мс, не более57–70708047
Собственное время включения, мс, не более90–1201008080
Собственное время отключения, мс, не более35–5530–556032
Механический ресурс, циклов ВО30 000–100 00030 00025 00010 000
Коммутационный ресурс при номинальных токах, циклов ВО30 000–50 00030 00020 00010 000
Коммутационный ресурс при номинальных токах отключения, циклов ВО40–100303025
Масса, кг65–2852706401 645

У нас вы можете посмотреть полный каталог вакуумных выключателей, а также выбрать продукты, оптимальным образом отвечающие вашим текущим потребностям.

Также рекомендуем ознакомиться с нашими статьями про вакуумную коммутационную аппаратуру и вакуумный выключатель BB.

Чтобы узнать какова цена на вакуумные выключатели в Екатеринбурге, Москве, Новосибирске или других городах Вы можете

Преимущества

Все свои положительные качества вакуумные выключатели проявляют в электроустановках, где совершается большое количество коммутаций. Поэтому аппараты работают особо эффективно в системах управления трансформаторов и электродвигателей.

• Высокая надежность по сравнению с масляными или воздушными выключателями. Что это значит? Количество отказов вакуумных выключателей существенно ниже, чем у вышеупомянутых коммутационных устройств. Это с уверенностью можно назвать главным преимуществом.

• Длительный срок эксплуатации. Выключатель способен прослужить 25 лет, после чего его заменяют новым.

• Быстродействие. Причина этому — более серьезный показатель вакуума на пробой электрическим током, чем масло или воздушная среда. Поэтому ход контактов дугогасительной камеры у выключателя составляет всего 6—10 мм, против 100 мм у масляных моделей. Скорость срабатывания около 2 мс, то есть, очень быстро. Вдобавок вакуумная конструкция обладает длительным механическим ресурсом.

Читайте так же:
Радиоуправляемый выключатель нагрузки honest

• Низкие эксплуатационные расходы. Это обусловлено дугогосящей средой. В тех же воздушных или масляных выключателях есть необходимость в пополнении оной. Вакууму ничего подобного не нужно. Полюса изготавливаются в герметичном и неразборном исполнении.

• Относительная простота конструкции. Нет дополнительных элементов в виде масляных баков или компрессорных установок, за которыми требуется постоянно следить и обслуживать.

• Выключатель справляется со своими функциями одинаково эффективно независимо от ориентации в пространстве.

Читать далее: Лучшие пылесосы Samsung без мешка характеристики моделей рекомендации перед покупкой

• Высокая коммутационная стойкость. Выключатель без ревизии и ремонта способен выдержать до 20 тыс. отключений с рабочей величиной токов и до 200 отключений при токе КЗ (ресурс зависит от конкретной модификации аппарата и величины тока КЗ). Ни один вид выключателей не способен обеспечить такой рабочий срок без профилактических мероприятий.

• Удобство ремонта и обслуживания. Вся конструкция построена по блочному принципу. Один заменяется на другой без необходимости разбора и восстановления.

• Малые габариты. При одних и тех же рабочих значениях токов и напряжений, размеры и масса вакуумного выключателя будут существенно меньше, чем аналогов.

• Безопасность. Отсутствие утечек масла или газа определяют высокую степень пожарной и экологической безопасности коммутационного аппарата. Срабатывает вакуумный выключатель тише, нежели воздушник. Последний «бьет» очень громко, как выстрел ружья, который слышно за 500 м.

Недостатки

Если с достоинствами конструкции все предельно понятно, то с минусами немного сложнее. Они несущественны. Но определенного внимания заслуживают.

• Более высокая стоимость по сравнению с аналогами. Да, вакуумный аппарат дороже, но эксплуатационные расходы ниже.

• Возможность разгерметизации вакуумной камеры, вследствие ее повреждения

Случается такое очень и очень редко, производители уделяют качеству продукции должное внимание

• При коммутации небольших токов возможны перенапряжения. Поэтому в связке с «вакуумником» должна устанавливаться соответствующая защита для оборудования.

Устройство и принцип действия

Вакуумные выключатели предназначены для совершения коммутационных операций в электроснабжающих сетях высокого напряжения. Конструктивно вакуумный выключатель состоит из трех отдельных полюсов или колонок (по одной на каждую фазу). Все колонки устанавливаются на одном приводе посредством опорного изолятора из полимера, фарфора или текстолита. У каждой из них имеются два вывода для подключения ошиновки.

Общий вид вакуумного автоматического выключателя

Устройство вакуумного выключателя.

Из картинки ниже видно, что внутри устройство состоит из двух контактов, подведенных под соответствующие потенциалы полюсов. Один из них выполняется подвижным, второй стационарным, как и в других типах выключателей. Силовые контакты вакуумного выключателя располагаются внутри герметичной камеры, способной сохранять вакуум в течении длительного периода времени (несколько десятков лет). Для чего в состав камеры включаются специальные металлические сплавы и керамические добавки. Именно этот элемент стал камнем преткновения для реализации такого выключателя в 30-е годы прошлого века.

Современные технологии предоставляют возможность сохранения вакуума внутри емкости, в том числе, с учетом динамических нагрузок, которые ей приходится претерпевать во время коммутаций. Для постоянного поддержания состояния сильно разреженной газовой среды, внутри вакуумной камеры, устройство комплектуется сильфонным компонентом. Он исключает возможность проникновения воздуха или другого газа внутрь вакуумной камеры при перемещении подвижного контакта.

Конструкция вакуумного выключателя

Принцип гашения электрической дуги.

При разрыве контактов между поверхностями возникает ионизация пространства. Если в воздушных выключателях с методом электромагнитного дутья эту ионизацию искусственно растягивают на несколько метров, а в элегазовых и масляных выключателях стараются погасить диэлектрическим материалом, то в вакуумных применяется другая технология. Основной принцип основан на том, что в идеальном вакууме отсутствует какое-либо вещество, способное к выделению заряженных частиц. Поэтому в момент разделения контактов, из-за разности потенциалов, единственным источником ионизации являются пары раскаленного металла.

Они продолжают движение между контактными поверхностями, но при переходе синусоиды электрического тока через ноль, заряженные частицы утрачивают энергию для ионизации и перемещения, их место быстро занимает пустое пространство с высокой электрической прочностью и дуга рвется. Ионы металлов примыкают к ближайшей поверхности – контактам или стенкам камеры. Такой принцип действия позволяет сократить время на прекращение горения дуги и предоставляет ряд преимуществ, в сравнении с другими типами коммутационных аппаратов. Но чрезмерные коммутационные перенапряжения могут привести к деформации поверхности, что будет препятствовать нормальному замыканию контактов, увеличит переходное сопротивление и вызовет перегрев внутри вакуумной камеры.

Принцип гашения электрической дуги

При разрыве контактов между поверхностями возникает ионизация пространства. В вакуумных выключателях применяется технология, отличная от воздушных и масляных. Основной принцип основан на том, что в идеальном вакууме отсутствует какое-либо вещество, способное выделять заряженные частицы. Поэтому в момент разделения контактов, из-за разности потенциалов, единственным источником ионизации являются пары раскаленного металла. Они продолжают движение между контактными поверхностями, но при переходе синусоиды электрического тока через ноль, заряженные частицы утрачивают энергию для ионизации и перемещения и их место занимает пустое пространство с высокой электрической плотностью и дуга рвется. Ионы металлов примыкают к ближайшей поверхности – контактам или стенкам камеры. Такой принцип действия позволяет сократить время на прекращение горения дуги и предоставляет ряд преимуществ, в сравнении с другими типами коммутационных аппаратов. Однако чрезмерные коммутационные перенапряжения могут привести к деформации поверхности, что будет препятствовать нормальному замыканию контактов, увеличит переходное сопротивление и вызовет перегрев внутри вакуумной камеры.

КРИТЕРИИ И ПРЕДЕЛЫ БЕЗОПАСНОГО СОСТОЯНИЯ

Климатическое исполнение и категория размещения У2 по ГОСТ1550, условия эксплуатации при этом:

  • наибольшая высота над уровнем моря до 3000 м;
  • верхнее рабочее значение температуры окружающего воздуха в КРУ (КСО) принимают равным плюс 55°С, эффективное значение температуры окружающего воздуха КРУ и КСО – плюс 40°С;
  • нижнее рабочее значение температуры окружающего воздуха – минус 40°С;
  • верхнее значение относительной влажности воздуха 100% при плюс 25°С;
  • окружающая среда невзрывоопасная, не содержащая газов и паров, вредных для изоляции, не насыщенная токопроводящей пылью в концентрациях, снижающих параметры электропрочности изоляции выключателя.
Читайте так же:
Abb автоматический выключатель s191

Рабочее положение в пространстве — любое. Для исполнений 59, 60, 70, 71 – основанием вниз либо вверх. Выключатели предназначены для работы в операциях «О» и «В» и в циклах О – 0,3 с – ВО – 15 с – ВО; О – 0,3 с – ВО – 180 с – ВО. Параметры вспомогательных контактов выключателя приведены в таблице 3.1. По стойкости к воздействию внешних механических факторов выключатель соответствует группе М 7 по ГОСТ 17516.1-90, при этом выключатель работоспособен при воздействии синусоидальной вибрации в диапазоне частот (0,5*100) Гц с максимальной амплитудой ускорения 10 м/с2 (1 q) и многократных ударов с ускорением 30 м/с2 (3 q).

Управление внутренним освещением зданий

Управление внутренним освещением зданий

Схема, количество и размещение пунктов управления освещением здания определяются:

  • схемой питания осветительной установки;
  • количеством и расположением пунктов питания;
  • назначением отдельных частей освещаемого здания;
  • необходимым режимом действия осветительной установки, вытекающим из производственного режима работы в освещаемом помещении или в отдельных частях его;
  • архитектурно-строительными особенностями освещаемого здания, расположением, в частности, входов и выходов, лестниц, наличием и расположением светопроемов естественного света;
  • наличием и расположением диспетчерских пунктов для управления освещением.

Вопрос электроснабжения любого предприятия является самостоятельным большим вопросом, и здесь он будет рассмотрен только в той его части, которая определяет схему управления освещением.

Схемы питания осветительных установок

Сети электрического освещения подразделяются на питающие, распределительные и групповые.

Питающая осветительная сеть – сеть от распределительного устройства подстанции или ответвления от воздушных линий электропередачи до вводного устройства (ВУ), вводно-распределительного устройства (ВРУ), главного распределительного щита (ГРЩ).

Распределительная сеть – сеть от ВУ, ВРУ, ГРЩ до распределительных пунктов, щитков и пунктов питания освещения.

Групповая сеть – сеть от щитков до светильников, штепсельных розеток и других электроприемников.

Питание электрического освещения осуществляется, как правило, совместно с силовыми электроприемниками от общих трехфазных силовых трансформаторов с глухозаземленной нейтралью и номинальным напряжением на низкой стороне равным 400/230 В. Номинальное напряжение в таких сетях составляет 380/220 В.

Питание осветительной установки может производиться как от отдельных осветительных трансформаторов, так и от общих, совмещенных трансформаторов, питающих одновременно и силовую нагрузку. Отдельные осветительные трансформаторы устанавливают редко, когда силовые трансформаторы питают такую нагрузку, как сварочные аппараты или крупные двигатели, при включении которых резко изменяется напряжение.

Схема электроснабжения осветительной и силовой нагрузки

Групповой щиток – устройство, в котором установлены аппараты защиты и коммутационные аппараты (или только аппараты защиты) для отдельных групп светильников, штепсельных розеток и стационарных электроприемников.

От распределительных щитов подстанций, питание осветительных сетей производится самостоятельными отдельными линиями. Каждый из них питает один или несколько групповых щитов в зависимости от их мощности и взаимного расположения. При питании магистралью трех и более (групповых) щитков их следует применять с аппаратами управления на вводе. В зданиях без естественного света вводные аппараты рекомендуется устанавливать на каждом из групповых щитков освещения, исключая те случаи, когда каждый щиток питается самостоятельной линией.

Использования магистрального щита освещения

При большом числе осветительных линий для небольших нагрузок, а также при ограниченном числе панелей распределительного щита целесообразно на подстанции или вблизи ее устанавливать для питания групповых щитков освещения магистральный щит, подключаемый одной линией к щиту. Магистральный щит следует также устанавливать на вводе линии в здания с большой осветительной нагрузкой, удаленные от подстанции.

Групповые и магистральные щиты укомплектовываются аппаратами защиты и управления: рубильниками, автоматами, магнитными пускателями и другими аппаратами в зависимости от принятой для данной установки системы управления освещением. Как при местном, так и при дистанционном управлении освещением с этих щитков возможно включать и отключать полностью или частично освещение объекта.

Предпочтительно иметь совершенно самостоятельные, отдельные силовые и осветительные линии. Для этого есть много причин и, в частности, различие в режиме работы, надобность в рабочем освещении сохраняется и в периоды, когда силовая нагрузка и соответственно силовая сеть отключены для ремонта, ревизии, на время нерабочих праздничных дней и т. п.

Схема питания групповых щитков через магистральный шкаф

В то же время, когда питающий трансформатор расположен на большом расстоянии от здания с небольшой осветительной нагрузкой, прокладывать раздельные силовые и осветительные питающие линии нерационально. В этом случае кабель, питающий щитки освещения, подключается к вводным контактам силовых щитков данного здания. Это обеспечивает независимость питания освещения от питания силовой нагрузки. Вблизи силового пункта на подключенном осветительном питающем кабеле устанавливаются аппараты защиты и управления. В складских пожароопасных помещениях такие вводные ящики устанавливаются снаружи здания.

Использование магистральных и распределительных шинопроводов при электроснабжении осветительных установок

В настоящее время на промышленных предприятиях довольно широко применяется распределение электроэнергии без промежуточных щитков — по магистральным и распределительным шинопроводам. От этих шинопроводов в разных местах, в зависимости от расположения потребителей электроэнергии, через специальные ящики в предохранителями и рубильниками отходят кабели к силовым сборкам.

При решении вопроса питания освещения от магистральных шинопроводов следует учитывать, что в определенное время они могут быть отключены, а освещение должно продолжать функционировать. Поэтому подключать питающие магистрали рабочего освещения следует не ко вторичным шинопроводам, а к головной части главных шинопроводов или к щиту трансформаторной подстанции.

Щитки освещения и пункты управление освещением

В целях удобства эксплуатации и экономии электроэнергии число пунктов управления освещением должно быть по возможности минимальным. Число их можно существенно уменьшить, сосредоточив управление освещением на групповых или магистральных щитках. В этом случае местные выключатели сохраняются лишь для отдельных закрываемых помещений (вентиляционных камер, складов, конторских помещений и т. п.), а также для производственных площадок и участков, не являющихся проходными и посещаемыми обслуживающим их персоналом эпизодически (например, для ремонтных площадок кранов).

Читайте так же:
Электрические предохранители автоматические выключатели

При большом числе щитков, удаленных друг от друга, число пунктов управления можно уменьшить путем централизации управления освещением непосредственно на щитах подстанций. Такое решение, как правило, рекомендуется принимать в случае, если число подстанций не более двух.

В больших производственных зданиях с недостаточным естественным светом или совсем без него не следует отказываться от централизованного управления освещением, так как и здесь включение и отключение электрического освещения производятся сравнительно часто: в перерывы на обед и между сменами, при ремонтных работах и т. п. При работе в несколько смен управление освещением с большого числа щитков, особенно расположенных в малоудобных для прохода технических этажах зданий, превращается в сложную задачу, решение которой, как правило, успешно достигается применением дистанционного управления освещением.

Групповая осветительная сеть

Очень важным вопросом при разработке в проекте вопросов управления освещением является разбивка всего количества устанавливаемых в помещении светильников на отдельные группы. Правильное решение этого вопроса предопределяет возможность организовать рациональную систему управления освещением и тем самым обеспечить удобную эксплуатацию осветительной установки и экономичное расходование электроэнергии для освещения.

Прежде всего в помещениях с боковыми окнами надо управлять рядами светильников, параллельными окнам. Это создает возможность с наступлением темноты включать не все светильники одновременно, а по частям: сначала в части помещения, удаленной от окон, и затем, по мере снижения естественной освещенности, в остальной части. Так же и в утренние часы: сначала выключается ряд светильников у окон, а затем, по мере увеличения естественной освещенности, ряд за рядом в глубину помещения.

При разбивке осветительной установки на группы и, следовательно, на самостоятельно управляемые части следует учитывать также особенности и условия организации производства в освещаемом помещении.

Если в большом освещаемом помещении расположено несколько различных и самостоятельных цехов или отделений, то желательно так сгруппировать светильники, чтобы работникам каждого из цехов можно было обслуживать, включать и выключать только свои группы, свою часть осветительной установки.

Если в помещении имеются несколько поточных линий и различные технологические участки с различным режимом работы, то следует так организовать управление группами светильников, чтобы можно было выключить часть из них на тех участках помещения, где по условиям производства в них нет необходимости.

При разбивке светильников на группы следует учитывать, что в производственных зданиях с особо пыльной средой (агломерационные фабрики, цементные заводы и т. д.), а также в зданиях, загроможденных оборудованием (технологическим, сантехническим и т. п.), естественное освещение через окна и фонари, как правило, не обеспечивает днем нормальных условий видения, что требует постоянного включения освещения в течение всего времени работы.

Во всех производственных помещениях необходимо предусматривать выделение в отдельной или отдельных группах небольшой части светильников для создания в помещении небольшой освещенности в то время, когда цех не работает и надо обеспечить только возможность охраны и уборки его. Если в помещении имеется аварийное освещение, то выделять отдельные небольшие группы светильников не следует, так как функции «дежурного» освещения будут выполнять светильники аварийного освещения.

Управление освещением автоматизированных цехов

Специфические особенности имеет управление освещением автоматизированных цехов. Групповая осветительная сеть автоматизированных цехов должна быть так запроектирована, чтобы на периоды, когда в цеху не производятся наладочные работы, имелась возможность отключения части общего освещения. Установки общего освещения автоматизированных цехов должны состоять из двух независимо друг от друга управляемых частей. При работе обеих частей осветительной установки по площади цеха создается освещенность, выбранная по нормам для данного цеха. При отключении большей части установки остающаяся во включенном состоянии «дежурная» часть ее обеспечивает освещенность, достаточную для общего наблюдения за работой механизмов.

Управление освещением автоматизированных, как и других, цехов должно быть удобным в эксплуатации, включение и выключение светильников должны производиться без больших потерь времени. В некоторых случаях схемы управления должны обеспечивать возможность включения и выключения освещения не из одного, а из двух мест. В других случаях рационально управление сосредоточить в одном месте — на пульте у диспетчера цеха. Это даст возможность при пользовании средствами телевизионной техники включать полное освещение для получения на экране телевизора более отчетливого изображения контролируемого технологического процесса.

Пофазное управление светильниками

В производственных помещениях в зависимости от количества светильников и мощности ламп в них применяются однофазные (фаза и нуль), трехфазные (три фазы и нуль) и реже двухфазные (две фазы и нуль) группы. Рекомендуется при трех- и двухфазных группах предусматривать пофазное управление светильниками, т. е. устанавливать не трех- и двухполюсные, а однополюсные выключатели, чем создается большая гибкость в управлении освещением. Необходимо, конечно, при этом равномерно и правильно распределить светильники по фазам. В трехфазных группах светильники присоединяются к фазам в следующем порядке:

  • А, В, С, С, В, А . — если нет необходимости в управлении по участкам или в равномерном уменьшении освещенности;
  • А, В, С, А, В, С . — если необходимо обеспечить при отключении одной или двух фаз достаточно равномерную уменьшенную освещенность по всей площади помещения;
  • А, А, А, . В, В, В, . С, С, С . — если в тех же случаях необходимо сохранить полную освещенность только на части площади цеха.

Управление аварийным освещением

Управление аварийным освещением должно во всех случаях производиться со щитков, число которых должно быть минимально возможным. Устанавливать выключатели, помимо щитков, следует только в отдельных помещениях, которые не используются для проходов и где обслуживающий персонал не находится постоянно (залы заседаний, гардеробы, нормально закрытые производственные помещения).

Читайте так же:
Схема подключения димера как проходного выключателя

Управление освещением в жилых зданиях

В жилых зданиях схема питания должна обеспечивать возможность раздельного питания потребителей квартир и объектов коммунального и другого назначения. Это вызывает необходимость установки, кроме вводной панели щита, еще дополнительно двух или трех панелей. Более рационально применять единый комбинированный распределительный пункт с необходимой коммутационной и защитной аппаратурой. Питающий кабель к распределительному пункту подключается через рубильник, при помощи которого можно полностью отключить электросеть дома. Коммутационная схема распределительного щита обеспечивает раздельное питание квартир, коммунальных, общедомовых потребителей, лестничного освещения и наружного освещения.

Что такое аксиальные выключатели?

Традиционные выключатели управляются нажатием на верхнюю или нижнюю половину качающейся клавиши. По положению клавиши можно судить о состоянии контактов (замкнуты или разомкнуты). В аксиальных механизмах клавиша при нажатии перемещается вдоль центральной оси. Исходное положение клавиши при замкнутых или разомкнутых контактах не меняется.

Был ли полезен для вас этот ответ?

Ваш голос принят. Благодарим Вас за то, что помогаете сделать наш сервис лучше.

Ваш вопрос успешно отправлен.

Ваш вопрос успешно отправлен.

Я, субъект персональных данных, в соответствии с Федеральным законом от 27 июля 2006 года № 152 «О персональных данных» предоставляю ООО «ЛЕГРАН», зарегистрированному по адресу: 105066, Москва, ул. Нижняя Красносельская, д.40/12, корпус 2, согласие на обработку персональных данных, указанных мной на страницах сайта https://legrand.ru/ в сети «Интернет», при заполнении веб-форм, характер информации которых предполагает или допускает включение в них следующих персональных данных: Имя, Фамилия, адрес электронной почты, с целью получения рассылки рекламно-информационных писем.

Согласен на передачу (предоставление, доступ) моих персональных данных ООО «ЮниСендер Рус», зарегистрированному по адресу: 127015, г. Москва, ул. Большая Новодмитровская, дом 23, этаж 2 с целью осуществления рассылки рекламно-информационных писем, а именно: Имя, Фамилия, адрес электронной почты.

Согласие предоставляется на совершение следующих действий (операций) с указанными в настоящем согласии персональными данными: сбор, запись, систематизацию, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передачу (предоставление, доступ), обезличивание, блокирование, удаление, уничтожение., осуществляемых как с использованием средств автоматизации (автоматизированная обработка), так и без использования таких средств (неавтоматизированная обработка).

Я подтверждаю, что ознакомлен с требованиями законодательства Российской Федерации, устанавливающими порядок обработки персональных данных, с политикой Оператора в отношении обработки персональных данных, а также с моими правами и обязанностями в этой области.

Согласие действует по достижении целей обработки или случая утраты необходимости в достижении этих целей.

Согласие может быть отозвано мною в любое время на основании моего письменного заявления.

Нажимая кнопку «Подписаться», я:

  1. Подтверждаю, что введенные мной данные (фамилия, имя, отчество, адрес электронной почты, номер телефона) являются корректными;
  2. Подтверждаю, что все данные предоставляются добровольно;
  3. Даю согласие на получение рассылок, рекламно-информационных писем.

Согласие предоставляется ООО «Легран» (ОГРН 1037718045320) и вступает в силу со дня его подписания и действует по достижении целей обработки или случая утраты необходимости в достижении этих целей. Я проинформирован о том, что согласие может быть отозвано в любой момент путем:

Пофазное управление выключателем 220 кв

Качественное выполнение тех или иных технологических процессов в современном мире обеспечивается за счет высокоточного и дорогостоящего оборудования. Работа которого напрямую зависит от качества поставляемой электроэнергии и состояния электроснабжающих линий. Увы, далеко не все отечественные сети способны обеспечить безопасный режим работы для них, из-за чего создается угроза поломки. Для предотвращения которой используются специальные защитные устройства – реле контроля фаз (РКФ).

Они позволяют отключить нагрузку в случае каких-либо неисправностей в питающей сети. Все что может нести угрозу для оборудования и влияет на результативность его работы или технологический процесс, воспринимается как сигнал к немедленному обесточиванию и реле контроля переводит коммутирующие элементы в отключенное положение.

Текст

(5 ГОСУДАРСТВЕННОЕ ПАТЕНТНОЕВЕДОМСТВО СССР1 ГОСПАТЕНТ СССР) ПИСАНИЕ ИЗОБРЕТЕНИЯ ВТОРСКОМУ СВИДЕТЕЛ ЬСТВУ ескии инстит ген, Д. А,ций и подстан- А. Васильев, ова и др, Под ергия, 1980, с.(56) Электрическая часть стаций. Учебник для Вузов, АИ. П. Крючков, Е. Ф. Налиред. А. А, Васильева, — М.: Э71. Изобретение относится к электротехнике, а именно к устройствам управления высоковольтными выключателями трехфазного тока и может быть использовано в электроустановках высокого напряжения.Целью изобретения является повышение надежности функционирования выключателя при отключении трехфазного короткого замыкания,На фиг. 1 представлена функциональная схема устройства, где 1 — источник питания, 2 — коммутируемая цепь, 3 — фазы выключателя, 4 — трансформаторы тока, 5 — трехфазное пусковое токовое реле, 6 — активные фильтры 2-й гармоники, 7 — максиминиселектор, 8 — схема задержки отключения выбранных фаэ выключателя, 9 — релейная защита коммутируемой цепи,На фиг. 2 приведен пример реализации предлагаемого устройства для одной фазы,(54) УСТРОЙСТВО ПОФАЗНОГО УПРАВЛ ЕНИЯ ВЫКЛЮЧАТЕЛЕМ(57) Использование: коммутационная техника высокого напряжения. Сущность изобретения: устройство производит опережающее отключение фазы со средним значением абсолютной величины апериодической составляющей тока по отношению к двум другим фазам, При этом в фазах с минимальным и максимальным значением апериодической составляющей тока их значения усредняются, что уменьшает коммутационный износ выключателя. 2 ил. где 10 — токовые цепи, подключенные к аналогичным входам других фаэ устройства, 11 — выпрямитель для выделения напряжения пропорционального абсолютной величине составляющей второй гармоники вторичного тока данной фазы. 12 — резистор для выделения среднеарифметического значения трех напряжений, пропорциональных абсолютным величинам составляющих второй гармоники вторичных токов трех фаэ, 13 — от других фаз макси-миниселектора, 14 — выходное реле фазы макси-миниселектора, 15- элемент задержки, 16 — на отключение выключателя 3 данной фазы, 17 — контакт пускового реле 5, 18 — к схемам задержки других фаэ, 19 — от релейной защиты 9.Таким образом, фазные входы пускового реле 5 подключены к трансформаторам тока 4 коммутируемой цепи 2, а токовые фаэные выходы этого реле соединены со входами активных фильтров 6, Выходы активных фильтров 6 через выпрямители 11 подключены ко входам макси-миниселектора 7. На выходе макси-миниселектора 7 в каждой фазе установлены выходные реле 14 (К 1 — 1), Контакты реле 14. — Н. О, (К 1 — 1,1) и 5 Н, 3. (К — 1,2) либо непосредственно, либо через элемент выдержки времени 15 соединяют цепь 19 от релейной защиты 9 на отключение данной фазы 16 выключателя 3. При этом Н, 3, контакты пускового реле 17 в нормальном режиме шунтируют схему за.- держки отключения выключателя. Сигнал 19 от релейной защиты 9 поступает также на аналогичные схемы других фаз устройства — 18. 15Приведенная на фиг. 2 схема примера, реализующего предложенное устройство, работает следующим образом, При возникновении трехфазного короткого замыкания в коммутируемой цепи 2 во всех трех фазах 20 возникают апериодические составляющие тока, которые протекая по первичным обмоткам трансформаторов тока 4, намагничивают сердечники этих трансформаторов, При этом в их вторичных токах возникают 25 составляющие четных гармоник. Наибольшую величину имеют составляющие второй гармоники. Эти составляющие выделяются в устройстве с помощью активных фильтров второй гармоники 6 и выпрямителями 11 30 преобразуются в напряжения, пропорциональные абсолютной величине второй гармоники. Полученные напряжения подаются на входы макси-миниселектора 7, в котором производится сравнивание каждого из трех 35 напряжений со среднеарифметическим значением этих напряжений, выделяемым на резисторе 12, В результате, на выходе макси-миниселектора срабатывают два из трех выходн ых реле 14 в тех фазах, где действуют 40 экстремальные напряжения. Контакты этих реле К — 1.1 включают в цепь отключения фазы выключателя 16 элемент выдержки времени 15 так, что сигнал от релейной защиты 19 задерживается на время, опреде ляемое элементом 15, В той же фазе, где составляющая второй гармоники имеет среднее значение реле 14 не срабатывает, поэтому сигнал от релейной защиты 19 проходит на отключение 16 без задержки. При 50 возникновении трехфазного короткого замыкания, одновременно с описанным выше, срабатывает пусковое реле 5 и его Н, 3. контакты 17 в схеме задержки размыкаются, чем вводитсяв действие схема задержки отключения. Во всех других случаях несимметричных коротких замыканий пусковое реле не срабатывает и все фазы выключателя отключаются без выдержки времени,Реализация предлагаемого изобретения позволит повысить надежность функционирования выключателя за счет увеличения срока службы дугогасящих контактов и уменьшить эксплуатационные расходы. Формула изобретения Устройство пофазного управления выключателем, содержащее три вывода для подключения. трансформаторов тока в трех фазах, три вывода для подключения блоков управления фазами выключателя и вывод для подключения выхода релейной защиты, о т л и ч а ю щ е е с я тем, что, с целью повышения надежности функционирования выключателя при отключении трехфазного короткого замыкания, в устройство введены трехфазное пусковое реле с тремя фазными входами, тремя фазными выходами и тремя пусковыми выходами, три активных фильтра второй гармоники с тремя входами и тремя выходами, блок задержки с тремя фазными входами, тремя пусковыми входами, тремя управляющими входами и тремя фазными выходами, причем каждый из фазных входов пускового реле соединен с соответствующими выводом для подключения трансформатора тока, каждый из указанных фазных выходов пускового реле через активный фильтр второй гармоники соединен с соответствующим входом максиминиселектора, выход указанного максиминиселектора соединен с соответствующими фазными входами блока задержки, выходы указанного блока задержки соединены с соответствующими выводами для подключения блоков управления фазами выключателя, пусковые выходы пускового реле соединены с соответствующими пусковыми входами блока задержки. управляющие входы блока задержки соединены с выводом для подключения выхода релейной защиты,1809474 орректор О.Кравцова ор зводственно-издательский комбинат «Патент», г, Ужгород, ул,Гагарина. 101 аз 1288ВНИИПИ Составитель С,ЛукьяновТехред М,Моргентал Тираж дарственного комитета по иэоб 113035, Москва, Ж-З 5, РаПодписноениям и открытиям при ГКНТ СССая наб., 45

Читайте так же:
Неавтоматические выключатели предохранители автоматические выключатели

Контроль

В устройстве реализован контроль постоянного тока. Постоянные токи и напряжения контролируются пофазно с помощью входных дискретных сигналов.

Функция резервирования при отказе выключателя (УРОВ)

Устройство защиты включает функцию резервирования при отказе выключателя, выполненную с использованием трех фазных токовых ИО, контролирующих протекание тока через выключатель.

Блок контроля напряжений содержит максимальные ИО напряжения прямой, обратной, нулевой последовательности и фазы А, а так же три минимальных ИО фазных напряжений.

Блокировка при неисправностях в цепях напряжения (БНН)

В устройстве реализована БНН, реагирующая на все виды обрывов и замыканий, как в цепях «звезды», так и в цепях «разомкнутого треугольника», а также обрыв нейтрального провода.

При обнаружении неисправностей в цепях напряжения выдается блокирующий сигнал на ДЗ и другие модули, использующие эти цепи напряжения и сигнал о неисправности цепей напряжения в цепи сигнализации.

Для исключения ложной работы защиты при включении терминала без цепей напряжения используется логика определения обрывов цепей напряжения при включении, вводимая в работу при появлении сигнала РПВ.

Модуль контроля ресурса выключателя (МКРВ)

Модуль позволяет контролировать два параметра выключателя:

  • остаточный механический ресурс выключателя (МРВ), который оценивается по числу произведенных коммутаций выключателя;
  • остаточный коммутационный ресурс выключателя (КРВ), который дополнительно учитывает величину отключаемых токов.

Автоматика фиксации отключения выключателя (ФОВ)

Функция ФОВ предназначена для контроля отключенного и включенного положения одного выключателя. Может использоваться в составе функций ФОЛ, ФОАТ, а также самостоятельно в составе функции ФОЛ для одного выключателя.

Фиксация тяжелых коротких замыканий (ФТКЗ)

ФТКЗ предназначена для выявления различных видов близких КЗ (междуфазное, трехфазное и т.д.).

Возникновение близкого КЗ фиксируется по глубокой просадке одного из напряжений с контролем пуска УРОВ

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector