Alma38.ru

Электро Свет
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Прогрузка автоматических выключателей

Прогрузка автоматических выключателей

Прогрузка автоматов

Сегодня очень важную роль при электромонтаже оборудования занимает проверка работоспособности всех устройств по защите от тока короткого замыкания на землю или перегрузок сети. Это в первую очередь связано с тем, что большинство электрооборудования выпускается разными производителями, с разными требованиями к качеству и для этого проводится прогрузка автоматических выключателей с целью проверки на соответствие номинальным параметрам дает гарантию безопасной работы.

Устройство для прогрузки автоматов различных типов позволяет применять их для проверки вольтамперных характеристик автоматических выключателей специалистами электролаборатории. Так, в соответствии с руководством ПУЭ п. 3.1.8 защита электрических сетей от коротких замыканий (КЗ) обеспечивает требования селективности и минимальное время отключения. В требованиях ПУЭ п. 1.7.79 и п. 7.3.139 представлены значения отношений минимального расчетного тока КЗ к Iноминальному току плавкой вставки или расцепителя, которые обеспечивают надежное отключение поврежденной электрической сети.

В системе TN максимальное время автоматического защитного отключения не должно быть больше 2 и 4 десятых секунд соответственно для 380 и 220В (ПЭУ п. 1.7.79 табл. 1.7.1).

Для автоматического отключения сети в электроустановках до 1000 Вольт с глухозаземлённой нейтралью, проводимость защитных нулевых проводников выбирается с учетом максимального короткого замыкания и должна быть такой, чтобы при возникновении аварийной ситуации возникал ток превышающий в 4 раза Iноминального плавкой вставки и в 6 раз I расцепителя автоматического выключателя с обратнозависимой характеристикой (ПЭУ п. 7.3.139).

Автоматические выключатели с электромагнитным расцепителем (без временной выдержки), при защите сетей, используют кратность тока КЗ согласно требований ПЭУ п.1.7.79.

Проверка автоматов

Для вновь смонтированных электроустановок или после их реконструкции используется методика прогрузки автоматов и испытаний на основании ПУЭ 1.8.37 п.п. 3.1, 3.2. Так, у выключателей с Iноминальным 400 Ампер и выше, проводится проверка сопротивления изоляции, которое должно быть не меньше 1Мом (ПУЭ 1.8.37 п. 3.1). Кроме того, проводится проверка действия расцепителя с мгновенным действием (электромагнитным расцепителем), и должно обеспечивать срабатывание выключателя при токе не более 1,1 номинального тока отключения, рекомендуемого заводом-изготовителем (ПЭУ 1.8.37 п. 3.2).

Объёмы испытаний автоматических выключателей

Если электроустановка смонтирована в соответствии с главами 7.1 и 7.2 раздела 6 ПУЭ, тогда проверяют все секционные и вводные выключатели, автоматы цепей автоматического пожаротушения и пожарной сигнализации, автоматы аварийного освещения, а так же не менее 2% выключателей групповых и распределительных сетей. В других электроустановках проверка аналогичная, но не менее 1% выключателей. В случае обнаружения автоматических выключателей (АВ) с не соответствием характеристик требованиям завода изготовителя, проводится проверка всех автоматов.

Для электроустановок находящихся в эксплуатации, периодичность прогрузки автоматов осуществляется каждые три года. Проверка действий расцепителей автоматов проводится согласно ПТЭЭП приложения 3 табл. 28 п. 28.6.

Методика прогрузки автоматических выключателей и определение различных видов испытаний, в заводских условиях, представлены в ГОСТ Р50030.2-99 по автоматическим выключателям и низковольтной аппаратуре управления и распределения.

Прогрузка автоматических выключателей

Так, для проверки характеристик выключателей, проводят типовые, контрольные или выборочные испытания (п. 8.1.1). Изготовитель проводит типовые испытания, которые включают: превышение температуры, характеристики и пределы расцепления, электроизоляционные свойства, работоспособность при эксплуатации, перегрузках и со встроенными плавкими предохранителями, максимальную отключающую способность, выдерживаемый кратковременный ток. Контрольные и выборочные испытания включают: механическое срабатывание, выдерживаемый кратковременный ток и электрическую прочность изоляции.

Изготовитель автоматического выключателя, в соответствии с требованиями ГОСТ Р50345-99 (п. 6.1) по защите автоматических выключателей от сверхтоков различного назначения, наносит маркировку, которая необходима для сверки и подготовки протокола прогрузки автоматических выключателей. При этом указываются: наименование (товарный знак); тип и № каталога (серии); Uноминальное; тип мгновенного расцепления (B, C, D) и Iноминальный (например, В16); отключающая номинальная способность (в амперах); коммутационная схема; степень защиты (если не IP20). Вольтамперная характеристика представляется по запросу. Если выключатель использует не нажимные кнопки, то разомкнутое положение обозначается – О, а замкнутое — | или красным цветом, который не используют для других кнопок. При одной кнопке, для замыкания контактов, ее вдавливают или обозначают дополнительным указателем. Входные выводы обозначают направленными к выключателю стрелками, а выходные – стрелками от выключателя. Выводы для нейтрали обозначают – N. По ГОСТ 25874, выводы для защитного проводника указывают символом 1.

Силами нашей электролаборатории проводится прогрузка автоматов специальным устройством — прибором для прогрузки автоматов УПТР-1МЦ. Данный прибор предназначен для определения характеристик тепловых, электронных и электромагнитных расцепителей выключателей постоянного и переменного тока со значением до 350 Ампер и Iвых.= 0-5000Ампер, а также для замера времени его срабатывания.

После проведения работ, все результаты испытаний заносятся в протокол прогрузки автоматов, в котором требуется иметь данные об испытании, как минимум, 10% автоматов от их общего количества.

Нормальная температура автоматических выключателей

Любому автоматическому выключателю необходимо время на срабатывание. Оно может быть составлять сотые доли секунды, а может и несколько минут. Все зависит от тока, который будет протекать через автоматический выключатель. Если правильно выбрали кабель и автомат, то можете не бояться, что при повышенном токе изоляция на ваших проводах не расплавится, например за 30 секунд, которые необходимы, чтобы автоматический выключатель сработал от определенной перегрузки.

Есть такие интересные время-токовые характеристики автоматических выключателей – это такие красивые графики кривых зависимости времени срабатывания от величины тока. Они на автоматах обозначаются буквами B, C и D.

Эти буковки стоят перед значением номинала автомата. Ниже представлены обычные графики, по которым можно определить, через какое время нагрузка будет обесточена при повышенном токе или его скачке. В школу ходили? С графиками работать умеете? Тогда сразу разберетесь. По вертикальной оси стоит время в секундах. По горизонтальной шкале стоит отношение протекающего по проводам тока к номинальному току автомата I/In.

Что такое время-токовые характеристики автоматических выключателей и зачем они нужны?

Чем же различаются время-токовые характеристики автоматических выключателей «B», «C» и «D»? Все просто! Они различаются в значении величины отношения протекающего тока к номинальному току I/In.

Читайте так же:
Розетки выключатели электрика опт
№ ппВремя-токовая характеристика автоматического выключателяОтношение протекающего тока к номинальному току I/In
1B3-5
2C5-10
3D10-20

Если все равно остались вопросы, то идем дальше разбираться вместе. Буду приводить все на конкретных примерах, так как это будет более понятно, чем если буду объяснять «на пальцах».

Допустим, есть у нас автоматический выключатель номиналом 10А с характеристикой В. Мы выбрали на 10А, так как проще будет считать, и они часто используются в быту.

Например, произошло ЧП. Жена попросила повесить ковер, а Вы когда сверлили, попали в провод, идущий от распредкоробки. Бабах! Вокруг тишина и темно. Здесь Вы просто сверлом закоротили жилы провода, и произошло короткое замыкание. Было такое? Признаюсь, что у меня в молодости такое было.

В данной ситуации автоматические выключатели с характеристикой В срабатывают практически мгновенно, когда ток в сети превысит значение номинала автомата в 3-5 раз. В нашем случае это ток лежит в пределах 30-50 ампер. Конечно при коротком замыкании ток увеличивается в сотни раз, но автомату с характеристикой В достаточно 3-5 кратного увеличения. Здесь приходит в действие электромагнитный расцепитель.

Смотрим графики ниже и видим, что при токе 50А автомат сработает через 0,01 секунду. Это получается отсюда. Ток при КЗ делим на номинальный ток автомата, т.е. 50А/10А=5. Теперь на горизонтальной шкале находим цифру 5 и ведем условную линию (на рисунке она выделена красным) вертикально вверх до пересечения с кривой. Ставим точку и от нее ведем условную горизонтальную линию до оси времени. У нас получилось ориентировочно 0,01 секунда. Аналогично при перегрузке сети током 15А у нас отношение составило 1,5 и время задержки на срабатывание составит 30 секунд. Здесь автомат отключится благодаря работе теплового расцепителя. Если сечение провода рассчитано правильно, то его изоляция таким током и за это время не успеет расплавиться. Вы защищены.

Выше мы рассмотрели нижнюю кривую, но на картинке их можно выделить 3 шт. Зачем все это? Давайте разберемся. Эти кривые предназначены для разных состояний автоматических выключателей: «холодного» (верхняя кривая) и «горячего» (нижняя кривая), а сам график составлен для температуры окружающей среды +30С. По пунктирной линии рассчитывается время отключения для автоматом номиналом не выше 32А.

Для холодного состояния автоматического выключателя с характеристикой В для вышеописанного примера, время задержки на срабатывание составит при токе 50А – 0,04 сек. и при токе 15А – 4000 сек. (примерно 67 мин.). На рисунке выше это показано синим цветом.

Еще учтите, что автоматы стоят в разных местах – в квартире, в подъезде, на улице и т.д. Например, зимой дома температура +25, в подъезде +16, на улице -25. Соответственно температура элементов расцепителя разная и ему нужно разное время, чтобы прогреться и заставить автомат сработать.

Еще здесь существуют поправочный коэффициент. Чем ниже температура окружающей среды, тем больший ток через себя будет пропускать автомат и наоборот. При одной и той же нагрузке в жарких и в холодных помещениях один и тот же автомат будет срабатывать при разных значениях тока. Это колебания не значительные и этот вопрос становится актуальным, когда автоматический выключатель сильно нагружен и работает на пределе своего номинала. Стоит повыситься окружающей температуре, как он сможет отключить нагрузку. Часто такой вопрос встает летом в жарких помещениях.

Теперь скажу несколько слов про время-токовые характеристики автоматических выключателей C и D. Суть их заключается в том, что все графики характеристик сдвинуты вправо, т.е. таким образом, увеличивается время их срабатывания. Автомат с характеристикой C при коротком замыкании сработает, когда ток в сети превысит номинальный ток самого автомата в 5-10 раз. Автомат с характеристикой D при коротком замыкании сработает, когда ток в сети превысит номинальный ток самого автомата в 10-20 раз.

Из графиков получаем (смотрим ниже). Для автоматического автомата на 10А характеристики C время срабатывания уже будет: при токе 50А примерно 0,02 сек. и при токе 15А примерно 40 сек. Это для горячего состояния автомата (красный цвет). Для холодного состояния (синий цвет) получаем: при токе 50А примерно 27 сек. и при токе 15А примерно 5000 сек. (83 мин.).

Для автоматического автомата на 10А характеристики D (смотрим графики ниже) время срабатывания уже будет: при токе 50А примерно 1,5 сек. и при токе 15А примерно 40 сек. Это для горячего состояния автомата (красный цвет). Для холодного состояния (синий цвет) получаем: при токе 50А примерно 30 сек. и при токе 15А примерно 6000 сек. (100 мин.).

Вот видите какая разница в значениях времени при перегрузке автоматов. Это тоже нужно знать и учитывать при их выборе.

Как правило, для квартир используют автоматические выключатели с характеристикой B, а на производстве — C и D. Хотя очень часто можно встретить в этажных щитках автоматы с параметром C. Еще автоматы с параметром B в продаже редко встречаются.

Также учтите, что каждый автомат может пропускать через себя ток больший номинального в 1,13 раз. Это видно из графика. Видите на горизонтальной оси значение 1,13 и если вести условную линию вертикально вверх, то она никогда не пересечет кривую времени. Следовательно, автомат при таком токе не сработает. Поэтому выбирайте кабель большего сечения, т.е. с запасом. Лучше перестрахуйтесь.

Смотрите для каких автоматических выключателей какой соответствует ток не отключения. Это тоже учитывайте при выборе автоматического выключателя по номиналу и кабеля.

№ ппНоминал автоматических выключателей, АУсловный ток не отключения автоматических выключателей, А
11011,3
21618,08
32022,6
42528,25

Например, для нагрузки, потребляющей ток 25А вы выбрали кабель сечением 2,5мм2. Тут жена собралась готовить обед, попутно пить чай, размораживать мясо в микроволновке и еще принесла на кухню фен (который вы не учитывали в своих расчётах), чтобы волосы посушить. Таким образом, вместо 25А вы можете получить в сети 28А, и автомат тут не сработает, так как он сработает при токе 25А*1,13=28,25А. Из таблицы видно, что для такого тока уже нужен провод сечением минимум 3 мм2. Но у нас провод сечением 2,5 мм2 и поэтому он будет греться и плавиться изоляция.

Читайте так же:
Патроны с акустическим выключателем

Да еще возьмите на заметку, что многие производители лукавят при производстве кабеля. Делают его по ТУ (техническим условиям), при которых уменьшают сечение кабеля. Я придерживаюсь такого мнения в выборе кабеля и автоматических выключателей, что лучше все брать с разумным запасом, чем предполагаемая нагрузка.

Описание климатических исполнений: УХЛ1, У1, УХЛ2, У2, УХЛ3, У3, УХЛ4, У4 и т.п.

Климатическое исполнение и категория размещения пишутся слитно, указание на макроклимат обозначается буквами, а указание на категорию обозначается цифрой.

  • Уумеренный макроклиматический район (территория Украины);
  • ХЛхолодный макроклиматический район;
  • УХЛ – объединение умеренного и холодного макроклиматических районов (включая территорию Украины);
  • Ттропический макроклиматический район;
  • Ообщий район суши, исключая районы и очень низкими температурами;
  • М – макроклиматический район с умеренно-холодным морским климатом;
  • Ввсе районы земного шара, исключая части земли с очень низкими температурами (например, Антарктида).

Из тропического макроклиматического района могут выделять: влажный тропический климат (обозначение ТВ) исухой тропический климат (обозначение ТС).

  • 1 – эксплуатация на открытом воздухе с воздействием любых атмосферных факторов (дождь, ливень, снег, пыль при сильном ветре);
  • 2 – эксплуатация под навесом (защита от вертикальных струй воды, допускается обрызгивание, попадание пыли, снега);
  • 3 – эксплуатация в крытых помещениях без регулирования температурных условий с естественной вентиляцией (температура практически не отличается от уличной, нет брызг и струй воды, незначительное количество пыли);
  • 4 – эксплуатация в крытых помещениях с отоплением и с искусственной вентиляцией (регулирование температурных условий, нет низких температур, низкая концентрация пыли);
  • 5 – работа во влажных ограниченных пространствах без отопления и вентиляции, при наличии воды либо конденсата (например, шахты, корабельные трюмы, подвалы).

В зависимости от выбранного производителем макроклиматического района (или районов), ГОСТом 15150 (таблица 3 страница 9 и таблица 6 страница 11) назначается диапазон температур воздушной среды и относительная влажность (стандарт вносит множество поправок для конкретных случаев, смотрите оригинал).

Макроклиматический район (или районы)Категория размещенияРабочие температуры, ºСПредельные рабочие температуры, ºСОтносительная влажность
ОтрицательнаяПоложительнаяMinMaxСреднегодоваяВерхнее значение
У1 и 2-45+40-50+4575% при 15ºС100% при 25ºС
3-45+40-50+4575% при 15ºС98% при 25ºС
ХЛ1 и 2-60+40-70+4575% при 15ºС100% при 25ºС
3-60+40-70+4575% при 15ºС98% при 25ºС
УХЛ1 и 2-60+40-70+4575% при 15ºС100% при 25ºС
3-60+40-70+4575% при 15ºС98% при 25ºС
4+1+35+1+4060% при 20ºС80% при 25ºС
Т1 и 2-10+50-10+6080% при 27ºС100% при 35ºС
3-10+50-10+6075% при 27ºС98% при 35ºС
4+1+45+1+55
О1 и 2-60+50-70+6080% при 27ºС100% при 35ºС
4+1+45+1+5575% при 27ºС98% при 35ºС

Для изделий эксплуатирующихся в уличных условиях (категория размещения 1), которые могут нагреваться солнечными лучами, верхние значения рабочих и предельных температур увеличиваются на:

  • +15ºС – поверхность белого либо серебристо белого цвета;
  • +30ºС – поверхности с цветами, отличающимися от указанных выше.

При нормированном верхнем значение относительной влажности 100% образовывается конденсат, при нормированных значениях 80% и 98% конденсата влаги не возникает.

Сочетание букв и цифр дают климатическое исполнение и категорию размещения:

  • У1, У2, У3 (умеренный макроклимат, работа на улице или в помещении);
  • ХЛ1, ХЛ2, ХЛ3 (холодный макроклимат, эксплуатация на открытом воздухе либо в здании);
  • УХЛ1, УХЛ2, УХЛ3, УХЛ4 (сочетание умеренного и холодного макроклимата, не путать цифру «3» с буквой «З»);
  • Т1, Т2, Т3, Т4;
  • О1, О2, О3.

Распространение государственного стандарта ГОСТ 15150-69

Все требования, изложенные в данном стандарте, являются обязательными для исполнения, кроме требований определённых как рекомендуемые или допускаемые.

Краткое содержание стандарта ГОСТ 15150-69

  • общие положения применяемые, в частности, для автоматических выключателей;
  • описание климатических исполнений и категорий изделий;
  • определение нормальных значений климатических факторов окружающей среды;
  • требования к изделиям (автоматическим выключателям) в части воздействия климата;
  • требования к изделиям в части номинальных значений климатических факторов при эксплуатации;
  • эффективные значения климатических факторов;
  • условия эксплуатации металлов и других материалов;
  • как применять изделия для умеренного климата в холодном или тропическом районах;
  • применение изделий на большей высоте, чем указанная номинальная;
  • описание условий хранения и транспортировки;
  • несколько приложений, детально описывающие некоторые факторы.

Несоответствие настоящего климатического стандарта ГОСТ 15150-69 и международного МЭК

По нескольким веским причинам, невозможно говорить об работе для приведения в соответствие международного стандарта МЭК и нормативов на территории СНГ.

  • нет чёткого разделения между климатами в МЭК;
  • присутствует нерациональное группирование климатов;
  • каждому конкретному условию эксплуатации приписывается свой климатический класс по единичному климатическому параметру;
  • в международной системе нет разделений на морской и океанический климаты;
  • на территории СНГ международный МЭК подбирает неудачные нижние значения температур, что приводит к неподходящему климатическому районированию.

Некоторые примеры климатических исполнений и категорий размещения

Пример УХЛ1. Гибкий кабель марки КГ для подвижного присоединения электроустановок, а также силовой кабель марки ВВГ выпускаются в исполнении УХЛ1 (подходит умеренный и холодный район при работе под воздействиями атмосферных факторов).

Читайте так же:
Расстояние от выключателя до умывальника

Пример УХЛ3. Большинству автоматических выключателей присваивается исполнение УХЛ (для макроклиматических районов с умеренным и холодным климатом) категория размещения 3 (эксплуатация в закрытых помещениях с естественной вентиляцией, где воздействия температуры, влажности и пыли ниже, чем на открытом пространстве; отсутствие воздействия дождя, снега, солнечного излучения, ветра).

Пример УХЛ4. Магнитные пускатели ПМЛ имеют климатическое исполнение УХЛ с категорией размещения 4 (создание искусственных климатических условий, закрытые отапливаемые помещения с принудительной вентиляцией).

USB over Ethernet USB over Ethernet

Время токовая характеристика

Электрический ток обладает одной отличительной чертой: он способен протекать только по замкнутому контуру. Если же эту цепь разорвать, то его действие сразу прекращается. Это свойство нашло воплощение в работе максимальных токовых защит, основанных на использовании предохранителей и автоматических выключателей.

Они подбираются таким образом, чтобы могли длительное время выдерживать номинальное значение протекающего через них тока. Этим обеспечивается надёжность электроснабжения потребителей. В то же время предохранители и автоматические выключатели обладают защитными функциями: во время возникновения аварийных режимов в контролируемой схеме они разрывают проходящий через них опасный ток.

При этом в комплексе учитываются два фактора:

  1. величина протекающего тока нагрузки
  2. продолжительность его воздействия

Плавкая вставка предохранителя перегорает от теплового воздействия, созданного проходящим по ней током.

Автоматический выключатель тоже учитывает температурный перегрев схемы и размыкает свои силовые контакты за счет работы теплового расцепителя. В то же время в его составе имеется еще одно устройство — электромагнитный расцепитель, который реагирует на превышение электромагнитной энергии, возникающей даже в импульсном режиме.

Подробнее про устройство, принцип действия и особенности эксплуатации автоматических выключателей и предохранителей рассказано здесь:

О работе всех этих устройств судят по определенным техническим характеристикам, которые принято называть время токовыми потому, что они точно определяют время срабатывания защит, учитывая его зависимость от кратности превышения тока аварийного режима относительно номинального состояния.

Время токовая характеристика (ВТХ) выражает графиками в декартовых координатах. По оси ординат располагают время, отсчитываемое в секундах, а абсцисс — отношение протекающего тока аварийного режима I к номинальной величине Iн коммутационного аппарата.

Для чего создается защитная характеристика у плавкой вставки

В целях правильной работы предохранителя внутри электрической схемы необходимо учитывать его:

  • технические возможности
  • условия проверок
  • назначение

Основные параметры защитной характеристики предохранителя

График срабатывания предохранителей при различных токах выражается кривой линией, разделяющей рабочее пространство координат на две части:

  1. рабочую область, в которой плавкая вставка остается целой и надежно обеспечивает протекание тока по защищаемой схеме
  2. зону протекания токов предельного отключения, в которой происходит разрыв электрической цепи

Первая часть на графике показана светло-зелёным цветом, а вторая выделена бежевым.

Время токовая характеристика

Защитная характеристика плавкой вставки предохранителя

Защитная характеристика у плавкой вставки лежит на границе этих двух зон. В пространстве рабочих токов предохранитель остается целым, а при увеличении их значений выше критического состояния перегорает.

Зона токов предельного отключения опасна для оборудования и должна быть отключена максимально быстро.

Защитная характеристика плавкой вставки выражает продолжительность отрезка времени от начала создания аварийного режима до момента его отключения, представленную в зависимости к превышения величины опасного тока над номинальным значением предохранителя.

Плавкая вставка характеризуется тремя видами токов:

  1. номинальным, который она способна выдерживать практически неограниченное время
  2. минимальным испытательным, под действием которого может проработать более одного часа
  3. максимальным испытательным, которое вызывает ее перегорание менее чем за один час

Плавкая вставка предохранителя защищает подключенную к ней схему от двух видов аварийных режимов:

  1. перегрузов повышенными нагрузками, которые отключаются с задержкой
  2. коротких замыканий — КЗ, требующих максимально быстрой ликвидации

Все эти режимы и виды токов учитываются при выборе предохранителя и плавкой вставки. Для этого разработаны математические соотношения, преобразованные графиками и таблицами в удобной форме.

Как создается защитная характеристика предохранителя

Плавкая вставка способна работать защитой только один раз. После этого она сгорает. Поэтому ее характеристику можно создать только косвенным путем.

Для этого на заводе выбирают случайным образом определённое количество образцов из каждой партии готовой продукции. Их используют для проведения дальнейших электрических испытаний под действием различных токов. По их результатам составляют таблицы и графики, которые позволяют судить о качестве выпущенной серии предохранителей.

Назначение защитной характеристики предохранителя

Плавкая вставка оценивается электрическими параметрами для решения чисто практической задачи: обеспечения правильного ее выбора по рабочим и защитным свойствам.

Для этого учитывают:

  • величину рабочего напряжения схемы, в которой должен работать предохранитель
  • предельный отключаемый ток у плавкой вставки, способный ее разорвать (отключить)
  • значение номинального тока предохранителя с учетом коэффициентов его нагрузки и отстройки от перегрузок.

Без использования защитной характеристики плавкой вставки правильно выбрать предохранитель для его надежной работы в электрической схеме невозможно.

Как работает время токовая характеристика у автоматического выключателя

На выбор время токовой характеристики оказывают влияние:

  • конструктивные особенности встроенных защит
  • конфигурация выбранного графика

Влияние конструкции защит автомата на форму его характеристики срабатывания

Обеспечением защитных свойств в автоматическом выключателе занимаются два встроенных устройства, работающие по принципам реле прямого действия. Они расцепляют силовые контакты автомата при превышении номинальных значений по критериям ограничения:

  1. тепловой нагрузки
  2. электромагнитного воздействия

Биметаллическая пластина теплового расцепителя воспринимает нагрев проводов обмотки. При его превышении она изгибается, выводя из удержания узел сцепления.

Время токовая характеристика

Принцип работы теплового расцепителя

Под действием усилия натяжения пружины поворачивается освобожденное от удержания подвижное коромысло, а его силовые контакты разрывают цепь питания.

У электромагнитного расцепителя отключение силовых контактов происходит за счет выбивания удерживающего рычага пружины ударом толкателя, которое происходит под воздействием тока аварийного режима.

Время токовая характеристика

Принцип работы электромагнитного расцепителя

В отличие от предохранителя с перегораемой плавкой вставкой оба этих устройства созданы для многоразового использования. Они позволяют оперативно восстанавливать отключения схемы после предотвращения ненормальных ситуаций.

Читайте так же:
Управление двигателем постоянного тока концевой выключатель

Работа теплового расцепителя и электромагнитной отсечки входит в алгоритм отключения автоматического выключателя и комплексно учитывается при его срабатывании во время токовой характеристике.

Поскольку температура окружающей среды и биметаллической пластины влияют на скорость работы защит, то все измерения принято проводить при +30 градусах Цельсия.

График время токовой характеристики для автоматического выключателя представляет собой сложную линию, выделенную буквами АВС. Верхний участок АВ соответствует работе теплового расцепителя, а его нижняя часть ВС — электромагнитной отсечке.

Время токовая характеристика

Время токовая характеристика автоматического выключателя

Время токовая характеристика, основные параметры графика

Учет влияния температуры

В отличие от защитной характеристики плавкой вставки предохранителя у автоматического выключателя график ВТХ представлен двумя линиями:

  1. верхней, учитывающей срабатывание защит непосредственно из холодного состояния +30 О С
  2. нижней, созданной после повторного включения, когда конструкция автомата не успела остыть

Зона между этими двумя крайними графиками выделена цветом. При работе автоматического выключателя следует учитывать, что он может находиться где-то внутри показанной зоны. В этом случае время отключения аварийных токов несколько сокращается в прогретом состоянии и увеличивается в холодном. За счет этого создается разброс параметров срабатывания.

Температура конструктивных элементов может оказывать значительное влияние на время срабатывания автомата. Особенно актуальным это становится при проведении электрических проверок, требующих нескольких измерений. Для их повторов необходимо обеспечивать время на остывание защит до +30 градусов.

Деление ВТХ на зоны

Автоматические выключатели строго разделяют по зонам время токовой характеристики для выделения эксплуатационных областей:

  • внутри первой должно обеспечиваться надежное протекание рабочих токов
  • а во второй — происходить отключения аварийных режимов

Линия токов условного нерасцепления

С целью обозначения первой области на оси абсцисс графика выбрано значение 1,13 I/I ном. Его называют точкой условного нерасцепления. Ниже этих токов отключение автоматического выключателя не должно происходить.

При ее достижении автоматические выключатели с номинальным значением токов до 63 ампер должны отключаться через 1 час, а с большими номиналами — через два.

Время токовая характеристика

Время токовая характеристика автоматического выключателя

Местоположение точки условного расцепления в обязательном порядке указывается на графике ВТХ.

Линия токов условного расцепления

Точка на оси абсцисс с величиной 1,45 I/I ном — это второе граничное значение зоны токов условного расцепления и нерасцепления силовых контактов.

Время токовая характеристика

Время токовая характеристика автоматического выключателя

Точка 1,45 I/I ном характеризует токи условного расцепления, она тоже обозначается на всех графиках ВТХ. При достижении подключенной к автомату нагрузки такой величины он должен отключиться за время:

  • меньшее, чем 1 час, если его номинал до 63 ампер
  • не дольше двух часов, когда номинальный ток превышает эту величину в 63 ампера

Вышеприведённый график показывает, что у выбранного автоматического выключателя время отключения аварийного режима из холодного состояния составляет 1 час, а при его нагреве может уменьшиться вплоть до 40 секунд.

Практическое применение параметров ВТХ

Анализ использования время токовой характеристики автоматических выключателей по токам условного расцепления силовых контактов позволяет учитывать длительность протекания перегрузок в подключенной электрической схеме. Это важно делать потому, что они могут повредить оборудование.

Например, при выборе автомата с номиналом на 16 ампер и нахождении его в холодном состоянии ток условного расцепления в 1,45∙16=23,2 ампера будет действовать на подключенную электропроводку в течение одного часа. Этого времени вполне достаточно для того, чтобы перегреть изоляцию медных проводов сечением 1,5 мм кв и вывести ее из строя, создать условия для возникновения пожара. А случаи защиты таких жил, да и алюминиевых на 2,5 мм кв, подобными автоматами еще часто встречаются на практике.

Чтобы исключить подобные ситуации рекомендуется внимательно анализировать время токовую характеристику автоматических выключателей применительно к подключенной к ним нагрузке. Для облегчения их выбора создана таблица соответствия номинальных токов и площадей поперечного сечения медных жил кабелей и проводов.

Время токовая характеристика

Таблица выбора автоматических выключателей по номинальному току и сечению жил кабельной линии

Производители автоматических выключателей всю свою продукцию проверяют на соответствие с принятыми стандартами. Основные требования к автоматам изложены в ГОСТ Р 50345—2010. Однако на некоторых участках время токовые характеристики у каждого завода могут незначительно отличаться. Эту особенность необходимо учитывать при выборе определенной модели и ее проверках.

Типы время токовых характеристик автоматических выключателей

Защиты автоматов могут создаваться с различным назначением для условий эксплуатации. По этим показателям графики их ВТХ обладают разными границами срабатывания по времени. Это позволяет их отстраивать по селективности, избегать ложных отключений оборудования. Автоматические выключатели выпускаются для бытового или промышленного использования.

Время токовая характеристика

Виды время токовых характеристик автоматических выключателей

Бытовые автоматы классифицируют тремя группами В, С и D:

  1. класс В предназначен для защиты протяженных линий и систем освещения. Кратность токов для его срабатывания лежит в пределах 3÷5 Iном
  2. класс С защищает розеточные группы или оборудование, создающее умеренные пусковые токи. Кратность токов 5÷10 Iном
  3. класс D применяют для защиты потребителей, обладающих повышенными пусковыми токами, например, трансформаторов или станков с мощными асинхронными электродвигателями. Кратность токов 10÷20 Iном

Автоматические выключатели типа В являются более чувствительными. Ими принято защищать оконечные потребители внутри квартир и домов. А в качестве вводного автомата лучше устанавливать те, которые относятся к типу С.

Качество состояния электропроводки и величина сопротивления петли фаза-ноль может влиять на выбор автоматического выключателя. Старая изоляция с высоким содержанием токов утечек и завышенными показателями петли способны ухудшить условия срабатывании автомата типа С или привезти к его отказу. В таких ситуациях применяют класс В.

Промышленные автоматы классифицируют тремя группами:

  1. класс L — более 8 Iном
  2. класс Z — более 4 Iном
  3. класс K — более 12 Iном

Среди производителей стран Европы встречаются модели автоматов с классом А, который имеет границу кратности токов 2÷3 Iном.

Читайте так же:
Проект замена масляного выключателя

Все эти особенности необходимо учитывать при выборе конструкции автоматического выключателя и его проверках. Автоматы, обозначенные одним и тем же номиналом, в зависимости от типа время токовой характеристики, обладают разными временами срабатывания.

Особенности работы автоматических выключателей с микропроцессорными расцепителями

Ни для кого не секрет, что автоматические выключатели это не просто рубильники, которые пропускают рабочий ток и обеспечивают два состояния электрической цепи: замкнутое и разомкнутое. Автоматический выключатель — это электрический аппарат, который в режиме реального времени «отслеживает» уровень протекающего тока в защищаемой цепи и отключает ее при превышении током определенного значения.

Самым распространенным сочетанием в автоматических выключателях является комбинация теплового и электромагнитного расцепителя. Именно эти два вида расцепителей обеспечивают основную защиту цепей от сверхтоков.

Тепловой расцепитель предназначен для отключения токов перегрузки электрической цепи. Тепловой расцепитель конструктивно состоит из двух слоев металлов, обладающих различными коэффициентами линейного расширения. Это и позволяет пластине изгибаться при нагреве и воздействовать на механизм свободного расцепления, в конечном итоге, отключая аппарат. Такой расцепитель еще называют термобиметаллическим расцепителем по названию основного элемента — биметаллической пластины.

Однако этот вид расцепителя обладает существенным недостатком — его свойства зависят от температуры окружающей среды. То есть, при слишком низкой температуре даже если цепь будет перегружена — тепловой расцепитель автоматического выключателя может не отключить линию. Возможна и обратная ситуация: в очень жаркую погоду автоматический выключатель может ложно отключать защищаемую линию, за счет нагрева биметаллической пластины окружающей средой. К тому же тепловой расцепитель потребляет электрическую энергию.

Электромагнитный расцепитель состоит из катушки и подвижного стального сердечника, удерживаемого пружиной. При превышении заданного значения тока, по закону электромагнитной индукции в катушке наводится электромагнитное поле, под действием которого сердечник втягивается внутрь катушки, преодолевая сопротивление пружины, и вызывает срабатывание механизма расцепления. В нормальном режиме работы в катушке также наводится электромагнитное поле, однако его силы не хватает, чтобы преодолеть сопротивление пружины и втянуть сердечник.

Устройство механизма электромагнитного расцепителя показано на примере АП50Б

Этот вид расцепителя не обладает таким большим потреблением электрической энергии, как тепловой расцепитель.

В настоящее время широкое распространение получили электронные расцепители на базе микроконтроллеров. С их помощью можно осуществлять точную настройку следующих параметров защиты:

  • уровень рабочего тока защиты
  • время защиты от перегрузки
  • время срабатывания в зоне перегрузки с функцией «тепловой памяти» и без нее
  • ток селективной отсечки
  • время селективной токовой отсечки

Реализованная функция проведения самотестирования работоспособности механизма свободного расцепления с помощью кнопки ТЕСТ позволяет проводить проверку аппарата потребителем.

Регулировка параметров настройки электрической цепи на лицевой панели устройства позволяет персоналу без лишнего труда понять, как настроена защита отходящей линии.

С помощью поворотных переключателей на лицевой панели устанавливается уровень рабочего тока цепи. Регулировка уставки рабочего тока расцепителя IR устанавливается в кратности: 0,4; 0,45; 0,5; 0,56; 0,63; 0,7; 0,8; 0,9; 0,95; 1,0 к номинальному току выключателя.

Существует два режима работы полупроводникового расцепителя при перегрузке электрической цепи:

  • с «тепловой памятью»;
  • без «тепловой памяти»

«Тепловая память» является эмуляцией работы теплового расцепителя (биметаллической пластины): микропроцессорный расцепитель программным способом задает время, которое потребовалось бы для остывания биметаллической пластины. Данная функция позволяет оборудованию и защищаемой цепи больше времени остывать и, соответственно, их срок службы не снижается.

Одним из преимуществ является установка уровня тока и времени срабатывания автоматического выключателя при коротком замыкании, что осуществляет необходимую селективность защиты. Это необходимо для того, чтобы вводной автоматический выключатель отключился позже, чем ближайшие к аварии аппараты. Важно отметить, что, в отличие от теплового расцепителя, уставки по времени в микропроцессорном расцепителе не меняются при изменении температуры окружающей среды.

Регулировка уставки тока селективной токовой отсечки выбирается кратно рабочему току IR: 1,5; 2; 3; 4; 5; 6; 7; 8; 9; 10.

Регулировка уставки времени селективной токовой отсечки выбирается в секундах: 0 (без выдержки времени); 0,1; 0,15; 0,2; 0,25; 0,3; 0,35; 0,4.

Электромагнитная совместимость микропроцессорных расцепителей автоматических выключателей OptiMat D позволяет применять эти аппараты в общепромышленных электроустановках. В свою очередь, электромагнитные поля, создаваемые элементами микропроцессорного расцепителя не оказывают негативного влияния на окружающую технику.

Рассмотрим выбор уставок на примере микропроцессорного расцепителя MR1-D250 автоматического выключателя OptiMat D. Имеется асинхронный двигатель АИР250S2 с параметрами Р=75 кВт; cosφ=0,9; Iп/Iном=7,5; для которого нужно выбрать уставки защищающего аппарата (автоматический выключатель защищает непосредственно линию с данным электродвигателем). Примем следующие условия: пуск электродвигателя легкий и время пуска равное 2 с.

Выбираем для нашего двигателя уставку в 4 секунды с функцией тепловой памяти:

В нашем случае номинальный ток электродвигателя составляет 126,6 А. Соответственно, выставляем переключатель регулировки номинального тока выключателя на значение 0,56, чтобы ближайшее значение получилось 140 А.

Чтобы автоматический выключатель не срабатывал ложно от пусковых токов, кратность которых для выбранного двигателя составляет 7,5 примем уставку селективной токовой отсечки равную 8.

Т. к. данный выключатель будет устанавливаться непосредственно для защиты электродвигателя для обеспечения селективности в действии выключателей принимаем мгновенную селективную токовую отсечку (без выдержки по времени).

Следует также отметить, что при превышении током короткого замыкания значения в 3000 А выключатель будет срабатывать мгновенно, то есть без выдержки по времени.

Таким образом, мы рассмотрели пример выбора уставок микропроцессорного расцепителя, обеспечивающие защиту асинхронного двигателя. Данный пример выбора уставок микропроцессорного расцепителя не является техническим руководством. В конечном виде панель настройки микропроцессорного расцепителя автоматического выключателя будет выглядеть так:

Электромагнитная совместимость, соответствующая требованиям ГОСТ Р 50030.2-2010, и возможность внедрения в систему автоматизации делает автоматические выключатели Optimat D250 более надежными, удобными и выгодными решениями по многим показателям.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector